

DIGITAL NOTES

ON
APPLICATION PROGRAMMING

B.TECH IV YEAR - I SEM
(2019-20)

DEPARTMENT OF INFORMATION TECHNOLOGY

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, INDIA.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

IV Year B.Tech IT – I Sem L T /P/D C

 5 1/-/- 4

(R15A0570)APPLICATION PROGRAMMING

UNIT I:

MS.NET Framework Introduction: The .NET Framework - an Overview- Framework

Components - Framework Versions-Types of Applications which can be developed using

MS.NET - MS.NET Base Class Library - MS.NET Namespaces - MSIL / Metadata and PE

files- Common Language Runtime (CLR) - Managed Code -MS.NET Memory Management /

Garbage Collection -Common Type System (CTS) - Common Language Specification

(CLS)- Types of JIT Compilers-Security Manager . Building C# Applications Using csc.exe,

Building .NET Applications Using Notepad++, Building .NET Applications Using Visual C#

2010 Express, Building .NET Applications Using Visual Studio 2010.

UNIT II:

Developing Console Application: Introduction to Project and Solution in Studio- Entry

point method - Main. - Compiling and Building Projects -Using Command Line Arguments -

Importance of Exit code of an application-Different valid forms of Main-Compiling a C#

program using command line utility CSC.EXE-Datatypes - Global, Stack and Heap Memory-

Common Type System-Reference Type and Value Type- Data types & Variables

Declaration- Implicit and Explicit Casting- Checked and Unchecked Blocks – Overflow

Checks-Casting between other data types-Boxing and Unboxing-Enum and Constant-

Operators-Control Statements - Working with Arrays -Working with Methods-Pass by value

and by reference and out parameters

UNIT III:

Object Oriented Programming: Object -Lifecycle of an Object-relationship between Class

and Object-Define Application using Objects-Principles of Object Orientation-Encapsulation

–Inheritance-Polymorphism-Encapsulation is binding of State and Behavior together-

understand the difference between object and reference- Working with Methods, Properties -

Copy the reference in another reference variable- Abandoning the object- Constructor &

Destructor-Working with "static" Members- Inheritance- Inheritance and "is a" relationship-

Protected Keyword -Constructor in Inheritance -Type Casting of Reference Types- Static and

Dynamic Binding and Virtual Methods-Abstract Class-Object as Parent of all classes-

Namespaces-Access Specifiers-Interface & Polymorphism-Syntax for Implementation of

Interface- Explicit Implementation of Interface members-Types of Inheritance-Overloading-

Overriding- Partial Classes.

Exception Handling: Exception -Rules for Handling Exception - Exception classes and its

important properties -Understanding & using try, catch keywords -Throwing exceptions-

Importance of finally block- "using" Statement -Writing Custom Exception Classes

UNIT IV:

Delegates And Events: Understanding the .NET Delegate type, defining a Delegate Type in

C#, The System. Multicast Delegate and System. Delegate Base Classes, The Simple Possible

Delegate Example, Sending Object State Notification using Delegates-chat application-

anonymous

PROGRAMMING WITH .NET ASSEMBLIES: Configuring .NET Assemblies, defining

Custom Namespaces, The role of .NET Assemblies, Understanding the Format of a .NET

assembly, Building and Consuming a Single-File Assembly, Building and Consuming a

Multifile Assembly, Understanding Private Assembly, Understanding Shared Assembly,

Consuming a Shared Assembly, Configuring Shared assemblies, Understanding Publisher

Policy assemblies, Understanding the <codebase> Element, The System. Configuration

Namespace.

UNIT V:

ADO.NET PART - I: The Connected Layer: A High-Level Definition of ADO.NET,

Understanding ADO.NET Data Provider, Additional ADO.NET Namespaces, The Types of

the System.Data.namespace, Abstracting Data Providers Using Interfaces, Creating the Auto

Lot Database, The ADO.NET data Provider Factory Model, Understanding the Connected

Layer of ADO.NET, Working with Data Readers, Building a reusable Data Access Library,

Creating a Console UI-Based Front End, Understanding Database Transactions.

ADO.NET PART - II: Disconnected Layer: Understanding the Disconnected Layer of

ADO.NET, Understanding the Role of the Dataset, Working with DataColumns, Working

with Datarows, Working with DataTables, Binding with Data Adapters, Adding

Disconnected Functionality to AutoLotDAL.dll, Multitabled Dataset Objects and Data

Relationships, the Windows Forms Database Code into a Class Library, Programming with

LINQ to DataSet.

TEXT BOOKS:

1.Andrew Troelsen (2010), Pro C# and the .NET 4 Platform, 5th edition, Springer (India)

Private Limited, New Delhi, India.

REFERENCE BOOKS:

1.E. Balagurusamy (2004), Programming in C#, 5th edition, Tata McGraw-Hill,

New Delhi, India. 2.Herbert Schildt (2004), The Complete Reference: C#, Tata

McGraw-Hill, New Delhi, India.

3.Simon Robinson, Christian N agel, Karli Watson, Jay Gl (2006), Professional C#, 3rd

edition, Wiley & Sons, India.

Websites
http://www.c-sharpcorner.com/beginners/

http://www.tutorialspoint.com/csharp/

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

INDEX

S. No

Unit
Topic Page no

1

I Introduction to MS.NET Framework 1

2

I MS.NET Memory Management-CTS 7

3 I Common Type System (CTS) 10

4 II
Developing Console Application: Introduction to

Project and Solution in Studio- Entry point method
15

5 II
Compiling a C# program using command line utility

CSC.EXE-Datatypes
17

6 II Boxing And Un-Boxing 24

7 III Object Oriented Programming: Object -Lifecycle of

an Object-relationship between Class and Object
31

8 III Defining Interfaces 32

9 III Exception Handling: Exception -Rules for Handling

Exception
37

10 IV
Delegates And Events: Understanding the .NET

Delegate type, defining a Delegate Type in C#
42

11 IV
PROGRAMMING WITH .NET ASSEMBLIES:

Configuring .NET Assemblies
44

12 IV Building and Consuming a Multifile Assembly 46

13 V
ADO.NET PART - I: The Connected Layer: A High-

Level Definition of ADO.NET
49

14 V Understanding the Connected Layer of ADO.NET 54

15 V
ADO.NET PART - II: Disconnected Layer:

Understanding the Disconnected Layer of

ADO.NET

56

APPLICATION PROGRAMMING Page 1

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

UNIT-I

MS.NET FRAMEWORK INTRODUCTION

 INTRODUCTION

.NET Framework 2.0 Software Development Kit (SDK). Do be aware that the .NET

Framework 2.0 SDK is automatically installed with Visual Studio 2005 as well as Visual C#

2005 Express;

If you are not developing with Visual Studio 2005/Visual C# 2005 Express, navigate to

http://msdn.microsoft.com/netframework and search for “.NET Framework 2.0 SDK”. Once

you have located the appropriate page, download setup.exe and save it to a location on your

hard drive. At this point, double-click the executable to install the software.

In addition to the content installed under C:\Program Files\Microsoft Visual Studio

8\SDK\v2.0,the setup program also creates the Microsoft.NET\Framework subdirectory

under your Windows directory. Here you will find a subdirectory for each version of the

.NET Framework installed on your machine. Within a version-specific subdirectory, you will

find command-line compilers for each language that ships with the Microsoft .NET

Framework (CIL, C#, Visual Basic .NET, J#, and JScript .NET), as well as additional

command-line development utilities and .NET assemblies.

THE .NET SOLUTION

i. Full Interoperability with Existing Win32code
• Existing COM binaries can inter-operate with newer .NET binaries & vice versa.
• Also, PInvoke(Platform invocation) allows to invoke raw C-based functions from

managed-code.
ii. Complete & Total Language Integration
• .NET supports

→ cross language inheritance
→ cross language exception-handling &

→ cross language debugging

iii. A Common Runtime Engine Shared by all .NET-aware languages

• Main feature of this engine is "a well-defined set of types that each .NET-aware

language understands".
iv. A Base Class Library that

→ protects the programmer from the complexities of raw API calls
→ offers a consistent object-model used by all .NET-aware languages

v. A Truly Simplified Deployment Model
• Under .NET, there is no need to register a binary-unit into the system-registry.
• .NET runtime allows multiple versions of same *.dll to exist in harmony on a single
machine.

vi. No more COM plumbing IClasFactory, IUnknown, IDispatch, IDL code and the evil

VARIANT compliant data-types have no place in a native .NET binary.

APPLICATION PROGRAMMING Page 2

C# LANGUAGE OFFERS THE FOLLOWING FEATURES
• No pointer required. C# programs typically have no need for direct pointer manipulation.
• Automatic memory management through garbage-collection. Given this, C# does not

support a delete keyword.
• Formal syntactic-constructs for enumerations, structures and class properties.
• C++ like ability to overload operators for a custom type without the complexity.
• Full support for interface-based programming techniques.

• Full support for aspect-based programming techniques via attributes. This brand of

development allows you to assign characteristics to types and their members to further

qualify the behavior.

THE BUILDING BLOCKS OF THE .NET PLATFORM
• .NET can be understood as

→ a new runtime environment &
→ a common base class library (Figure:1-1)

• Three building blocks are:
→ CLR (Common Language Runtime)
→ CTS (Common Type System)

→ CLS (Common Language Specification)
• Runtime-layer is referred to as CLR.
• Primary role of CLR: to locate, load & manage .NET types.
• In addition, CLR also takes care of

→ automatic memory-management
→ language-integration &

→ ensuring type-safety
• CTS

→ describes all possible data-types & programming-constructs supported by runtime
→ specifies how these entities interact with each other &
→ specifies how they are represented in metadata format

• CLS define a subset of common data-types & programming-constructs that all .NET

aware- languages can agree on.
• Thus, the .NET types that expose CLS-compliant features can be used by all .NET-aware

languages.
• But, a data type or programming construct, which is outside the bounds of the CLS,

may not be used by every .NET programming language.
The Role of Base Class Library (BCL)
• BCL is a library of functionality available to all .NET-aware languages.
• This encapsulates various primitives for

→ file reading & writing
→ threads

→ file IO

→ graphical rendering

→ database interaction
→ XML document manipulation
→ programmatic security
→ construction of web enabled front end

APPLICATION PROGRAMMING Page 3

AN OVERVIEW OF .NET BINARIES

• Regardless of which .NET-aware language you choose (like C#, VB.NET, VC++.NET

etc),
→.NET binaries take same file-extension (.exe or .dll)
→.NET binaries have absolutely no internal similarities (Figure:1-2)

• .NET binaries do not contain platform-specific instruction but rather platform-agnostic

"Common Intermediate Language (CIL)”.

• When .NET binaries have been created using a .NET-aware compiler, the resulting

module is bundled into an assembly.

• An assembly is a logical grouping of one or more related modules (i.e. CIL, metadata,

manifest) that are intended to be deployed as a single unit.

• An assembly contains CIL-code which is not compiled to platform-specific instructions

until absolutely-necessary.

• Typically "absolutely-necessary" is the point at which "a block of CIL instructions" are

referenced for use by the runtime-engine.

• The assembly also contains metadata that describes the characteristics of every "type"

living within the binary.
• Assemblies themselves are also described using metadata, which is termed as manifest.
• The manifest contains information such as

→ name of assembly/module
→ current version of assembly

→ list of files in assembly
→ copyright information
→ list of all externally referenced assemblies that are required for proper execution

Managed code & unmanaged code
• C# produces the code that can execute within the .NET runtime.The code targeting

the .NET runtime is called as managed-code.
• Conversely, code that cannot be directly hosted by the .NET runtime is termed

unmanaged-code.

APPLICATION PROGRAMMING Page 4

SINGLE-FILE AND MULTI-FILE ASSEMBLIES
• Single-file assemblies contain all the necessary CIL, metadata and manifest in a single

well-defined package.

• On the other hand, multi-file assemblies are composed of numerous .NET binaries, each

of which is termed a module.

• When building a multiple assembly, one of these modules (termed the primary module)

must contain the assembly manifest (and possibly CIL instructions and metadata for

various types).
• The other related modules contain a module level manifest, CIL, and type metadata.
• The primary module maintains the set of required secondary modules within the assembly

manifest.
• When building a multiple assembly, one of the module (termed as primary module)

must contain the assembly-manifest. The other related modules contain a module-level

manifest, CIL and type metadata.

• Multiple assemblies are used when different modules of the application are written in

different languages.
• Q: Why would you choose to create a multi-file assembly?

Ans: Multiple assemblies make the downloading process more efficient. They enable

you to store the seldom used types in separate modules and download them only

when needed

APPLICATION PROGRAMMING Page 5

ROLE OF CIL

• CIL is a language that sits above any particular platform-specific instruction set.

• Regardless of which .NET-aware language you choose (like C#, VB.NET, VC++.NET

etc), the associated compiler produces CIL instructions.

• Once the C# complier (csc.exe) compiles the source code file, you end up with a single

file *.exe assembly that contains a manifest, CIL instructions and metadata describing

each aspect of the program.

Benefits of CIL

• Language Integration: Each .NET-aware language produces the same underlying-CIL.

Therefore, all
.NET-aware languages are able to interact within a well-defined binary arena.
• Since CIL is platform-agnostic, the .NET runtime is poised to become a platform-

independent architecture. Thus, .NET has the potential to allow you to develop an

application in any language and have it run on any platform.

THE ROLE OF METADATA
• Metadata describes each and every type (class, structure, enumeration) defined in the

binary, as well as the members of each type (properties, methods, events)

• It describes each externally referenced assembly that is required by the executing

assembly to operate correctly.
• It is used

→ by numerous aspects of the .NET runtime environment
→ by various development tools

→ by various object browsing utilities, debugging tools and even the C# compiler

itself

• It is the backbone of numerous .NET technologies such as .NET Remoting, reflection

services and object serialization.

APPLICATION PROGRAMMING Page 6

• Consider the following example

• Within the resulting "MetaInfo" window, you will find a description of the Add()

method looking

something like the following:

• In above metadata, you can see that Add() method, return type and method arguments have

been fully described by the C# compiler.

THE ROLE OF MANIFEST

• Assemblies themselves are also described using metadata, which is termed as manifest.
• The manifest contains information such as

→name of assembly/ module
→current version of the assembly

→list of files in assembly
→copyright information
→list of all externally referenced assemblies that are required for proper execution

COMPILING CIL TO PLATFORM-SPECIFIC INSTRUCTIONS

• Assemblies contain CIL instructions and metadata, rather than platform-specific

instructions.
• CIL must be compiled on-the-fly before use.
• Jitter(Just-in-time compiler) is used to compile the CIL into meaningful CPU instructions.
• The .NET runtime environment forces a JIT compiler for each CPU targeting the CLR,

each of which is optimized for the platform it is targeting.

• Developers can write a single body of code that can be efficiently JIT-compiled and

executed on machines with different architectures. For example,

→ If you are building a .NET application that is to be deployed to a handheld

device (such as a Pocket PC), the corresponding Jitter is well equipped to

run within a low-memory environment.
→ On the other hand, if you are deploying your assembly to a back-end server
(where memory is seldom an issue), the Jitter will be optimized to function in a
high-memory environment

Method #2

MethodName: Add (06000002)

RVA: 000002064

ImplFlags: [IL] [Managed] (00000000) hasThis

ReturnType: I4 2

Arguments

Argument #1: I4

Argument #2: I4

2 Parameters

(1) ParamToken: (08000001) Name: x flags: [none] (00000000)

(2) ParamToken: (08000002) Name: y flags: [none] (00000000)

//the C# calculator

public class Calc

{

public int Add(int x,int y)

{ return x+y;}

}

APPLICATION PROGRAMMING Page 7

• Jitter will cache the results in memory in a manner suited to the target OS. For example,

if a call is made to a method named PrintDocument(), the CIL instructions are compiled

into platform-specific instructions on the first invocation and retained in memory for later

use. Therefore, the next time PrintDocument() is called, there is no need to recompile the

CIL.

UNDERSTANDING THE CTS
• A given assembly may contain any number of distinct “types”.

• In the world of .NET, “type” is simply a generic term used to refer to a member from

the set {class, structure, interface, enumeration, delegate}.
• CTS

→ fully describes all possible data-types & programming constructs supported by
the runtime
→ specifies how these entities can interact with each other &
→ details of how they are represented in the metadata format

• When you wish to build assemblies that can be used by all possible .NET-aware

languages, you need to conform your exposed types to the rules of the CLS.

CTS Class Types
• A class may be composed of any number of members (methods, constructor) and data

points (fields).

• CTS allow a given class to support virtual and abstract members that define a

polymorphic interface for derived class.

• Classes may only derive from a single base class (multiple inheritances are not allowed for

class).

• In C#, classes are declared using the class keyword. For example,

Class Characteristic Meaning

Is the class “sealed” or not? Sealed classes cannot function as a base class to other classes.

Does the class

implement any

interfaces?

An interface is a collection of abstract members that provide a

contract between the object and object-user. The CTS allows a
class to implement any number of interfaces.

Is the class abstract

or concrete?

Abstract classes cannot be directly created, but are intended to
define common behaviors for derived types. Concrete classes
can be created directly.

What is the “visibility” of

this class?

Each class must be configured with a visibility attribute.

Basically, this feature defines if the class may be used by

external
assemblies, or only from within the defining assembly (e.g., a
private helper class).

// A C# class type

public class Calc

{

public int Add(int x, int y)

{

return x + y;

}

}

APPLICATION PROGRAMMING Page 8

CTS Structure Types
• A structure can be thought of as a lightweight type having value-semantics.
• Structure may define any number of parameterized constructors.
• All structures are derived from a common base class: System.ValueType.
• This base class configures a type to behave as a stack-allocated entity rather than a

heap-allocated entity.

• The CTS permits structures to implement any number of interfaces; but, structures may

not become a base type to any other classes or structures. Therefore structures are

explicitly sealed.

• In C#, structure is declared using the struct keyword. For example,

CTS Interface Type
• Interface is a named collection of abstract member definitions, which may be supported

by a given class or structure.
• Interfaces do not derive from a common base type (not even System.Object)
• When a class/structure implements a given interface, you are able to request access to

the supplied functionality using an interface-reference in a polymorphic manner.

• When you create custom interface using a .NET-aware language, the CTS allows a

given interface to derive from multiple base interfaces.
• In C#, interface types are defined using the interface keyword, for example:

// A C# interface type. public interface IDraw

{

void Draw();

}

CTS Enumeration Types
• Enumeration is used to group name/value pair under a specific name.
• By default, the storage used to hold each item is a System.Int32 (32-bit integer)
• Enumerated types are derived from a common base class, System.Enum This base class

defines a number of interesting members that allow you to extract, manipulate, and

transform the underlying name/value pairs programmatically.

• Consider an example of creating a video-game application that allows the player to

select one of three character categories (Wizard, Fighter, or Thief). Rather than keeping

track of raw numerical values to represent each possibility, you could build a custom

enumeration as:

// A C# structure type struct

Point

{

// Structures can contain fields. public

int xPos, yPos;

// Structures can contain parameterized constructors. public

Point(int x, int y)

{

xPos = x;

yPos = y;

}

// Structures may define methods. public

void Display()

{

Console.WriteLine("({0}, {1})", xPos, yPos);

}

}

APPLICATION PROGRAMMING Page 9

CTS Delegate Types

• Delegates are the .NET equivalent of a type-safe C-style function pointer.
• The key difference is that a .NET delegate is a class that derives from

System.MulticastDelegate, rather than a simple pointer to a raw memory address.

• Delegates are useful when you wish to provide a way for one entity to forward a call to

another entity.
• Delegates provide intrinsic support for multicasting, i.e. forwarding a request to multiple

recipients.
• They also provide asynchronous method invocations.
• They provide the foundation for the .NET event architecture.
• In C#, delegates are declared using the delegate keyword as shown in the following

example:

INTRINSIC CTS DATA TYPES

.NET Base Type (CTS
Data Type)

VB.NET Keyword C# Keyword Managed Extensions
for C++ Keyword

System.Byte Byte byte unsigned char

System.SByte SByte sbyte signed char

System.Int16 Short short short

System.Int32 Integer int int or long

System.Int64 Long long int64

System.UInt16 UShort ushort unsigned short

System.Single Single float Float

System.Double Double double Double

System.Object Object object Object^

System.Char Char char wchar_t

System.String String string String^

System.Decimal Decimal decimal Decimal

System.Boolean Boolean bool Bool

// This C# delegate type can 'point to' any method

// returning an integer and taking two integers as input.

public delegate int BinaryOp(int x, int y);

// A C# enumeration

public enum playertype

{

wizard=10,

fighter=20,

thief=30

};

APPLICATION PROGRAMMING Page 10

UNDERSTANDING THE CLS
• The Common Language Specification (CLS) is a set of rules that describe the small and

complete set of features.

• These features are supported by a .NET-aware compiler to produce a code that can be

hosted by CLR.
• Also, this code can be accessed by all languages in the .NET platform.
• The CLS can be viewed as physical subset of the full functionality defined by the CTS.
• The CLS is a set of rules that compiler builders must conform to, if they intend their

products to function seamlessly within the .NET-universe.

• Each rule describes how this rule affects those who build the compilers as well as those

who interact with them. For example, the CLS Rule 1 says:

Rule 1: CLS rules apply only to those parts of a type that are exposed outside the defining

assembly.

• Given this rule, we can understand that the remaining rules of the CLS do not apply to

the logic used to build the inner workings of a .NET type. The only aspects of a type that

must match to the CLS are the member definitions themselves (i.e., naming conventions,

parameters, and return types). The implementation logic for a member may use any

number of non-CLS techniques, as the outside world won‟t know the difference.

• To illustrate, the following Add() method is not CLS-compliant, as the parameters and

return values make use of unsigned data (which is not a requirement of the CLS):

•We can make use of unsigned data internally as follows:

public class Calc

{

public int Add(int x, int y)

{

// As this ulong variable is only used internally,

// we are still CLS compliant.

ulong temp; temp= x+y; return temp;

}

}

•Now, we have a match to the rules of the CLS, and can assured that all .NET languages are

able to invoke the Add() method.

Ensuring CLS compliance
• C# does define a number of programming constructs that are not CLS-compliant. But,

we can instruct the C# compiler to check the code for CLS compliance using a single

.NET attribute:

// Tell the C# compiler to check for CLS compliance.

public class Calc

{

// Exposed unsigned data is not CLS compliant!

public ulong Add(ulong x, ulong y)

{

return x + y;

}

}

APPLICATION PROGRAMMING Page 11

[assembly: System.CLSCompliant(true)]

This statement must be placed outside the scope of any namespace. The [CLSCompliant]

attribute will instruct the C# compiler to check each and every line of code against the rules

of the CLS. If any CLS violations are discovered, we will receive a compiler error and a

description of the offending code

UNDERSTANDING THE CLR
• The runtime can be understood as a collection of external services that are required to

execute a given compiled unit-of-code. (Figure: 1-3)

• .NET runtime provides a single well-defined runtime layer that is shared by all .NET

aware languages.

• The heart of CLR is physically represented by an assembly named mscoree.dll

(Common Object Runtime Execution Engine)

• When an assembly is referenced for use, mscoree.dll is loaded automatically, which in

turn loads the required assembly into memory.
• Runtime-engine

→ lays out the type in memory

→ compiles the associated CIL into platform-specific instruction

→ performs any security checks and

→ then executes the code
• In addition, runtime-engine is in charge of

→ resolving location of an assembly and

→ finding requested type within binary by reading contained-metadata
• In addition, runtime-engine will also interact with the types contained within the base class

libraries.
• mscorlib.dll assembly contains a large number of core types that encapsulate a wide

variety of common programming tasks as well as the core data types used by all .NET

languages.

APPLICATION PROGRAMMING Page 12

A TOUR OF THE .NET NAMESPACES
• C# language does not come with a pre-defined set of language-specific classes.

• There is no C# class library. Rather, C# developers use existing types supplied by the

.NET framework.

• Advantage of namespaces: any language targeting the .NET runtime makes use of same

namespaces and same types as a C# developer.

• Namespace is a way to group semantically related types (classes, enumerations,

interfaces, delegates and structures) under a single umbrella. For example, the System.IO

namespace contains file I/O related types; the System.Data namespace defines basic

database types, and so on

//Hello world in C#

using System; public

class MyApp

{

public static void Main()

{

Console.WriteLine("hi from C#");

}

}

'Hello world in VB.NET

Imports System Public

Module MyApp

Sub Main()

Console.WriteLine("hi from VB.NET")

End Sub

End Module

APPLICATION PROGRAMMING Page 13

• In above Hello world code, each language is making use of the “Console” class defined

in the “System” namespace.
• "System" namespace provides a core body of types that you will need to use as a .NET

developers.
• You cannot build any sort of functional C# application without making a reference to

the "System" namespace.
• “System" is the root namespace for numerous other .NET namespaces.

.NET NAMESPACES
System

In this, you find numerous low-level classes dealing with primitive types, mathematical

manipulations, garbage collection, exceptions and predefined attributes.
System.Collections
This defines a number of stock container objects (ArrayList, Queue, etc) as well as base

types and interfaces that allow you to build customized collections.
System.Data.OleDb These are used for database manipulation.
System.Diagnostics
In this, you find numerous types that can be used by any .NET-aware language to

programmatically debug and trace your source code.
System.Drawing System.Drawing.Printing
In this, you find numerous types wrapping GDI+ primitives such as bitmaps, fonts, icons,

printing support, and advanced graphical rendering support.
System.IO
This includes file IO and buffering.
System.Net
This contains types related to network programming (requests/responses, sockets, end
points)
System.Security
In this, you find numerous types dealing with permissions, cryptography and so on.
System.Threading
This deals with threading issues. In this, you will find types such as Mutex, Thread and
Timeout.
System.Web
This is specifically geared toward the development of .NET Web applications, including

ASP.NET & XML Web services.
System.Windows
This facilitates the construction of more traditional main windows, dialog boxes and custom

widgets.
System.Xml
This contains numerous types that represent core XML primitives and types used to interact

with XML data.

Accessing a Namespace Programmatically
• In C#, the “using” keyword simplifies the process of referencing types defined in a

particular namespace. In a traditional desktop application, we can include any number of

namespaces like –

using System; // General base class

library types. using System.Drawing; //

Graphical rendering types.

• Once we specify a namespace, we can create instances of the types they contain. For

example, if we are interested in creating an instance of the Bitmap class, we can write:

APPLICATION PROGRAMMING Page 14

• As this application is referencing System.Drawing, the compiler is able to resolve the

Bitmap class as a member of this namespace. If we do not specify the System.Drawing
namespace, we will get a compiler error. However, we can declare variables using a fully
qualified name as well:

Following Techniques can be used to learn more about the .NET Libraries
• .NET SDL online documentation
• The ildasm.exe utility
• The class viewer web application.
• The wincv.exe desktop application.
• The visual studio .NET integrated object browser.

Deploying the .NET Runtime
• The .NET assemblies can be executed only on a machine that has the .NET Framework

installed.
• But, we can not copy and run a .NET application in a computer in which .NET is not

installed. However, if you deploy an assembly to a computer that does not have .NET

installed, it will fail to run. For this reason, Microsoft provides a setup package named

dotnetfx.exe that can be freely shipped and installed along with your custom software.
• Once dotnetfx.exe is installed, the target machine will now contain the .NET base class

libraries,
.NET runtime (mscoree.dll), and additional .NET infrastructure (such as the GAC,

Global Assembly Cashe).

using System;

class MyApp

{

public void DisplayLogo()

{

// Using fully qualified name.

System.Drawing.Bitmap bm =new

System.Drawing.Bitmap(20, 20);

...

}

}

using System;

using System.Drawing; class

MyApp

{

public void DisplayLogo()

{

// create a 20x20 pixel bitmap. Bitmap bm =

new Bitmap(20, 20);

...

}
}

APPLICATION PROGRAMMING Page 15

UNIT-II

DEVELOPING CONSOLE APPLICATION

BUILDING A C# APPLICATION USING csc.exe
• Consider the following code:

• Once you finished writing the code in some editor, save the file as TestApp.cs
• To compile & run the program, use the following command-set:

• List of Output Options of the C# Compiler:

1) /out : This is used to specify name of output-file to be created. By default,

name of output-file is same as name of input-file.

2) /target:exe :This builds an executable console application. This is the default

file output- type.
3) /target:library :This option builds a single-file assembly.
4) /target:module :This option builds a module. Modules are elements of multi-

file assemblies.

5) /target:winexe :Although you are free to build windows-based applications

using the /target:exe flag, this flag prevents an annoying console window from

appearing in the background.

REFERENCING EXTERNAL ASSEMBLIES
• Consider the following code:

• As you know, mscorlib.dll is automatically referenced during the compilation process.

 But if you want to disable this option, you can specify using /nostdlib flag.
• Along with "using" keyword, you must also inform compiler which assembly contains

the referenced namespace. For this, you can use the /reference(or /r) flag as follows:
csc /r:System.Windows.Forms.dll TestApp.cs

using System;

using System.Windows.Forms; class

TestApp

{

public static void Main()

{

MessageBox.Show("Hello . . .");

}

}

Output:

C:\CSharpTestApp> csc TestApp.cs

C:\CSharpTestApp> TestApp.exe

Testing 1 2 3

using System;

class TestApp

{

public static void Main()

{

Console.WriteLine("Testing 1 2 3");

}

}

APPLICATION PROGRAMMING Page 16

• Now, running the application will give the

output as –

COMPILING MULTIPLE SOURCE FILES
• When we have more than one source-file, we can compile them together. For

illustration, consider the following codes:

File Name: HelloMessage.cs

using System;

using

System.Windows.Forms;

class HelloMessage

{

public void Speak()

{

MessageBox.Show("Hello . . .");

}

}

File Name: TestApp.cs

using

System;

class

TestAp

p

{

public static void Main()

{

Console.WriteLine("Testing 1 2 3");

HelloMessage h= new

HelloMessage(); h.Speak();

}

}

• We can compile C# files by listing each input-file explicitly:
csc /r:System.Windows.Forms.dll testapp.cs hellomsg.cs

• As an alternative, you can make use of the wildcard character(*) to inform the compiler

to include all *.cs files contained in the project-directory.

• In this case, you have to specify the name of the output-file(/out) to directly control the

name of the resulting assembly:
csc /r:System.Windows.Forms.dll /out:TestApp.exe *.cs

REFERENCING MULTIPLE EXTERNAL ASSEMBLIES
• If we want to reference numerous external assemblies, then we can use a semicolon-

delimited list. For example:

csc /r:System.Windows.Forms.dll; System.Drawing.dll *.cs

APPLICATION PROGRAMMING Page 17

WORKING WITH csc.exe RESPONSE FILES
• When we are building complex C# applications, we may need to use several flags that

specify numerous referenced assemblies and input-files.
• To reduce the burden of typing those flags every time, the C# compiler provides response-

files.
• Response-files contain all the instructions to be used during the compilation of a program.
• By convention, these files end in a *.rsp extension.
• Consider you have created a response-file named "TestApp.rsp" that contains the

following arguments:

• Save this response-file in the same directory as the source files to be compiled. Now, you

can build
your entire application
as follows:
csc @TestApp.rsp
• Any flags listed explicitly on the command-line will be overridden by the options in a

given response-file. Thus, if we use the statement,
csc /out:Foo.exe @TestApp.rsp

• The name of the assembly will still be TestApp.exe(rather than Foo.exe),given the

/out:TestApp.exe flag listed in the TestApp.rsp response-file.

THE DEFAULT RESPONSE FILE (csc.rsp)
• C# compiler has an associated default response-file(csc.rsp), which is located in the

same directory as csc.exe itself (e.g.,

C:\Windows\Microsoft.NET\Framework\v2.0.50215).

• If we open this file using Notepad, we can see that numerous .NET assemblies have

already been specified using the /r: flag.

• When we are building our C# programs using csc.exe, this file will be automatically

referenced, even if we provide a custom *.rsp file.

• Because of default response-file, the current Test.exe application could be successfully

compiled using the following command set
csc /out:Test.exe *.cs

• If we wish to disable the automatic reading of csc.rsp, we can specify the /noconfig option:

csc @Test.rsp /noconfig

GENERATING BUG REPORTS
• /bugreport flag allows you to specify a file that will be populated with any errors

encountered during the compilation-process. The syntax for using this flag is–

csc /bugreport: bugs.txt *.cs

• We can enter any corrective information for possible errors in the program, which will

be saved to the specified file (i.e. bugs.txt).
• Consider the following code with an error (bug):

public static void Main()

{

HelloMessage h=new HelloMessage();

h.Speak() // error occurs because ; is missing

}

this is the response file for the TestApp.exe application # external

assembly reference

/r: System.Windows.Forms.dll

#output and files to compile using wildcard syntax

/target:exe /out:TestApp.exe *.cs

APPLICATION PROGRAMMING Page 18

• When we compile this file using /bugreport flag, the error message will be displayed and

corrective
action is expected as shown –

Test.cs (23, 11): Error CS1002: ; expected

Please describe the compiler problem: _

• Now if we enter the statement like

“FORGOT TO TYPE SEMICOLON”

then, the same will be stored in the „bugs.txt‟ file.

C# "PREPROCESSOR" DIRECTIVES
• These are processed as part of the lexical analysis phase of the compiler.

• Like C, C# supports the use of various symbols that allow you to interact with the

compilation process.
• List of pre-processor directives

#define, #undef
These are used to define and un-define conditional compilation symbols.
#if,#elif, #else, #endif
These are used to conditionally skip sections of source code.
#line
This is used to control the line numbers emitted for errors and warnings.
#error, #warning
These are used to issue errors and warnings for the current build.
#region, #endregion
These are used to explicitly mark sections of source-code.
Regions may be expanded and collapsed within the code window; other IDEs will

ignore these symbols.

SPECIFYING CODE REGIONS
• Using #region and #endregion tags, we can specify a block of code that may be hidden

from view and identified by a textual marker.
• The use of regions helps to keep lengthy *.cs files more manageable.
• For example, we can create a region for defining a type‟s constructor (may be class,

structure etc), type‟s properties and so on.

• Consider the following code:

• Now, when we put mouse curser on that region, it will be shown as –

class Test

{

…….

#region Unwanted

public class sub1

{

…….

}

public interface sub2

{

…………

}

#endregion

}

APPLICATION PROGRAMMING Page 19

THE ANATOMY OF A BASIC C# CLASS
• Consider the following code:

• All program-logic must be present within a type-definition.
• „Type‟ may be a member of the set {class, interface, structure, enumeration}.
• Every executable C# program must contain a Main() method within a class.
• Main() is used to signify entry point of the program.
• Public methods are accessible from other types.
• Static methods can be invoked directly from the class-level, without creating an object.
• Main() method has a single parameter, which is an array-of-strings (string[] args).
• args parameter may contain any number of incoming command-line arguments.
• Console class is defined within the „System‟ namespace.
• Console class contains method-named WriteLine().
• WriteLine() is used to pump a text-string to the standard console.

using System; class

HelloClass

{

public static int Main(string[] args)

{

Console.WriteLine("hello world\n"); return

0;

}

}

APPLICATION PROGRAMMING Page 20

PROCESSING COMMAND LINE PARAMETERS
Using Length property of System.Array

• Consider the following code:

Output:
C:\> csc HelloClass.cs
C:\> HelloClass.exe three two one

Command line arguments

Argument: three Argument: two

Argument: one

• Here, we are checking to see if the array of strings contains some number of items

using Length
property of System.Array.

• If we have at least one member in the array, we loop over each item and print the

contents to the output window.
Using "foreach" keyword
• Consider the following code:

• foreach loop can used to iterate over all items within an array, without the need to test for

the
array‟s upper limit.
Using GetCommandLineArgs() method of System.Environment type
• Consider the following code:

using System; class

HelloClass

{

public static int Main(string[] args)

{

Console.WriteLine(" Command line arguments \n ");

foreach(string s in args) Console.WriteLine("Argument

{0}:",s);

}

}

using System; class

HelloClass

{

public static int Main(string[] args)

{

Console.WriteLine(" Command line arguments \n "); for(int

i=0;i<args.Length;i++)

Console.WriteLine("Argument:{0} ",args[i]);

return 0;

}

}

APPLICATION PROGRAMMING Page 21

Output:
C:\> csc HelloClass.cs
C:\> HelloClass.exe three two path is C:\>

HelloClass.cs Command line arguments

Argument: three
Argument: two

• We can also access command line arguments using the GetCommandLineArgs()

method of the
System.Environment type.
• First index identifies current directory containing the program itself, while remaining

elements in the array contain the individual command-line arguments

UNDERSTANDING VALUE TYPES AND REFERENCE TYPES
• In .NET, data type may be value-based or reference-based.
VALUE TYPES REFERENCE TYPES
• Value-based types include all numerical data types

(int, float, char) as well as enumerations and structures.
• These are allocated on the stack.
• These can be quickly removed from memory once they

fall out of the defining-scope.

• By default, when we assign one value type to another,

a member-by-member copy is achieved.
• Consider the following code:

• Reference types include all strings & objects.
• These are allocated on the garbage-collected heap.

• These types stay in memory until the garbage

collector destroys them.

• By default, when we assign one reference type to

another, a new reference to the same object in

memory created.
• Consider the following code:

struct Foo class Foo
{ {

public int x,y; public int x,y;

} }

class ValRef class ValRef
{ {

public static int Main(string[] args) public static int Main(string[] args)
{ {
Foo f1=new Foo(); Foo f1=new Foo();
f1.x=100; f1.x=100;

f1.y=100; f1.y=100;

Console.WriteLine(“assigning f2 to f1”); Console.WriteLine(“assigning f2 to f1”);

Foo f2=f1; Foo f2=f1;

Console.WriteLine(“f1.x={0}”,f1.x); Console.WriteLine(“f1.x={0}”,f1.x);
Console.WriteLine(“f1.y={0}”,f1.y); Console.WriteLine(“f1.y={0}”,f1.y);
Console.WriteLine(“f2.y={0}”,f2.y); Console.WriteLine(“f2.y={0}”,f2.y);

Console.WriteLine(“f2.y={0}”,f2.y); Console.WriteLine(“f2.y={0}”,f2.y);

Console.WriteLine(“changing f2.x to 900”); Console.WriteLine(“changing f2.x to 900”);

f2.x=900; f2.x=900;

Console.WriteLine(“here are the X‟s again”); Console.WriteLine(“here are the X‟s
again”);

Console.WriteLine(“f2.x={0}”,f2.x); Console.WriteLine(“f2.x={0}”,f2.x);

using System; class

HelloClass

{

public static int Main(string[] args)

{

string[] theArgs=Environment.GetCommandLineArgs();

Console.WriteLine("path is :{0}",theArgs[0]); Console.WriteLine("

Command line arguments \n ");

for(int i=1;i<theArgs.Length;i++)

Console.WriteLine("Arguments :{0}",theArgs)

}
}

APPLICATION PROGRAMMING Page 22

Console.WriteLine(“f1.x={0}”,f1.x); Console.WriteLine(“f1.x={0}”,f1.x);

return 0; return 0;
} }

} }

Output:
assigning f2 to

f1 f1.x=100

f1.y=100

f2.x=100
f2.y=100

Output:
assigning f2 to

f1 f1.x=100

f1.y=100

f2.x=100
f2.y=100

changing f2.x to

900 here are the

X‟s again f2.x=900
f1.x=100

changing f2.x to

900 here are the

X‟s again f2.x=900
f1.x=900

• Here, we have 2 copies of the „Foo‟ type on the stack,

each of which can be independently manipulated.

Therefore, when we change the value of f2.x, the value of
f1.x is unaffected.

• Here, we have 2 references to the same object in

the memory. Therefore, when we change the value of

f2.x, the value of f1.x is also changed.

VALUE TYPES REFERENCE TYPES

Allocated on the stack Allocated on the managed heap
Variables die when they fall out of the
defining scope

Variables die when the managed heap
is garbage collected

Variables are local copies Variables are pointing to the memory
occupied by the allocated instance

Variable are passed by value Variables are passed by reference
Variables must directly derive
from System.ValueType

Variables can derive from any other type
as long as that type is not "sealed"

Value types are always sealed and cannot
be extended

Reference type is not sealed, so it
may function as a base to other
types.

Value types are never placed onto the heap
and therefore do not need to be finalized

Reference types finalized before
garbage collection occurs

APPLICATION PROGRAMMING Page 23

VALUE TYPES CONTAINING REFERENCE TYPES
• Consider the following code:

Output:

making InnerRef type and setting structData to 666

assigning valWithRef2 to valWithRef

changing all values of valWithRef2

values after change

valWithRef.refType.x is I AM NEW

valWithRef2.refType.x is I AM

NEW valWithRef.structData is 666
valWithRef2.structData is 777

• When a value-type contains other reference-types, assignment results in a copy of the
references.

In this way, we have 2 independent structures, each of which contains a reference

pointing to the same object in memory i.e. shallow copy.

• When we want to perform a deep copy (where the state of internal references is fully

copied into a new object), we need to implement the ICloneable interface.

class TheRefType

{

public string x;

public TheRefType(string s)

{x=s;}

}

struct InnerRef

{

public TheRefType refType;

public int structData; public

InnerRef(string s)

{

refType=new TheRefType(s);

structData=9;

}

}

class ValRef

{

public static int Main(string[] args)

{

Console.WriteLine("making InnerRef type and setting structData to 666"); InnerRef

valWithRef=new InnerRef("initial value"); valWithRef.structData=666;

Console.WriteLine("assigning valWithRef2 to valWithRef"); InnerRef

valWithRef2;

valWithRef2=valWithRef;

Console.WriteLine("changing all values of valWithRef2");

valWithRef2.refType.x="I AM NEW"; valWithRef2.structData=777;

Console.WriteLine("values after change"); Console.WriteLine("valWithRef.refType.x is {0}",

valWithRef.refType.x); Console.WriteLine("valWithRef2.refType.x is {0}",

valWthRef2.refType.x); Console.WriteLine("valWithRef.structData is {0}",

valWithRef.structData); Console.WriteLine("valWithRef2.structData is {0}",

valWithRef2.structData);

}

}

APPLICATION PROGRAMMING Page 24

BOXING AND UN-BOXING
• We know that .NET defines 2 broad categories of data types viz. value-types and

reference-types.

• Sometimes, we may need to convert variables of one category to the variables of other

category. For doing so, .NET provides a mechanism called boxing.
• Boxing is the process of explicitly converting a value-type into a reference-type.
• When we box a variable, a new object is allocated in the heap and the value of variable

is copied into the object.

• Unboxing is the process of converting the value held in the object reference back into a

corresponding value type.

• When we try to unbox an object, the compiler first checks whether is the receiving data

type is equivalent to the boxed type or not.
• If yes, the value stored in the object is copied into a variable in the stack.
• If we try to unbox an object to a data type other than the original type, an exception

called InvalidCastException is generated.

• For example:

• Generally, there will few situations in which we need boxing and/or unboxing.
• In most of the situations, C# compiler will automatically boxes the variables. For

example, if we pass a value type data to a function having reference type object as a

parameter, then automatic boxing takes place.

• Consider the following program:

Output:

System.Int32 20

Int32

• When we pass custom (user defined) structures/enumerations into a method taking

generic System.Obejct parameter, we need to unbox the parameter to interact with the
specific members of the structure/enumeration.

using System;

class Test

{

public static void MyFunc(object ob)

{

Console.WriteLine(ob.GetType());

Console.WriteLine(ob.ToString());

Console.WriteLine(((int)ob).GetTypeCode()); //explicit unboxing

}

public static void Main()

{

int x=20;

MyFunc(x); //automatic boxing

}

}

// unboxing successful

// InvalidCastException

int p=20; object

ob=p;

int b=(int)ob; string
s=(string)ob;

APPLICATION PROGRAMMING Page 25

METHOD PARAMETER MODIFIERS
• Normally methods will take parameter. While calling a method, parameters can be

passed in different ways.
• C# provides some parameter modifiers as shown:

Parameter
Modifier

Meaning

(none) If a parameter is not attached with any modifier, then parameter‟s value
is passed to the method. This is the default way of passing parameter.
(call-by-value)

out The output parameters are assigned by the called-method.

ref The value is initially assigned by the caller, and may be optionally
reassigned by the called-method

params This can be used to send variable number of arguments as a single
parameter.
Any method can have only one params modifier and it should be the
last parameter for the method.

THE DEFAULT PARAMETER PASSING BEHAVIOR

• By default, the parameters are passed to a method by-value.

• If we do not mark an argument with a parameter-centric modifier, a copy of the data is

passed into the method.

• So, the changes made for parameters within a method will not affect the actual

parameters of the calling method.

Consider the following program:

using System; class Test

{

public static void swap(int x, int y)

{

int temp=x; x=y;

y=temp;

}

public static void Main()

{

int x=5,y=20;

Console.WriteLine("Before: x={0}, y={1}", x, y);

swap(x,y);

Console.WriteLine("After: x={0}, y={1}", x, y);

}

}

Output:

Before: x=5, y=20 After : x=5, y=20

APPLICATION PROGRAMMING Page 26

out KEYWORD
• Output parameters are assigned by the called-method.
• In some of the methods, we need to return a value to a calling-method. Instead of

using return
statement, C# provides a modifier for a parameter as out.

• Consider the following program:

Output:

z=25

• Useful purpose of out: It allows the caller to obtain multiple return values from a single

method-
invocation.
• Consider the following program:

Output:

integer=5,

string=Hello, how are you? boolean=true

using System;

class Test

{

public static void MyFun(out int x, out string y, out bool z)

{

x=5;

y="Hello, how are you?";

z=true;

}

public static void Main()

{

int a;
string str;

bool b;

MyFun(out a, out str, out b);

Console.WriteLine("integer={0} ", a);

Console.WriteLine("string={0}", str);

Console.WriteLine("boolean={0} ", b);

}

}

using System;

class Test

{

public static void add(int x, int y, out int z)

{

z=x+y;

}

public static void Main()

{

int x=5,y=20, z;

add(x, y, out z);

Console.WriteLine("z={0}", z);

}

}

APPLICATION PROGRAMMING Page 27

ref KEYWORD
• The value is assigned by the caller but may be reassigned within the scope of the method-

call.
• These are necessary when we wish to allow a method to operate on (and usually change

the values of) various data points declared in the caller‟s scope.
• Differences between output and reference parameters:

→ The output parameters do not need to be initialized before sending to

called-method. Because it is assumed that the called-method will fill

the value for such parameter.
→ The reference parameters must be initialized before sending to called-method.

Because, we are passing a reference to an existing type and if we don‟t assign

an initial value, it would be equivalent to working on NULL pointer.

• Consider the following program:

Output:

Before: hello

After: HELLO

params KEYWORD
• This can be used to send variable number of arguments as a single parameter.
• Any method can have only one params modifier and it should be the last parameter for the

method
• Consider the following example:

using System;

class Test

{

public static void MyFun(params int[] arr)

{

for(int i=0; i<arr.Length; i++)

Console.WriteLine(arr[i]);

}

public static void Main()

{

int[] a=new int[3]{5, 10, 15}; int

p=25, q=102;

MyFun(a);

MyFun(p, q);

}

}

using System;
class Test
{

public static void MyFun(ref string s)
{

s=s.ToUpper();

}

public static void Main()
{

string s="hello";
Console.WriteLine("Before:{0}",s);
MyFun(ref s);
Console.WriteLine("After:{0}",s);

}

}

APPLICATION PROGRAMMING Page 28

Output

5 10 15 25 102

PASSING REFERENCE TYPES BY VALUE AND REFERENCE
• Consider the following program:

Output:

Raja 33

Raja 66

John 22

• Rule1: If a reference type is passed by value, the called-method may change the values

of the object‟s data but may not change the object it is referencing.
• Rule 2: If a reference type is passed by reference, the called-method may change the

values of the object‟s data and also the object it is referencing.

}

}

public void disp()

{

Console.WriteLine("{0} {1}", name, age);

}

public static void Main()

{

Person p1=new Person("Raja", 33);

p1.disp();

CallByVal(p1); p1.disp();

CallByRef(ref p1);

p1.disp();

}

// p is now pointing to a new object on the heap

public static void CallByRef(ref Person p)

{

p.age=66;

p=new Person("John", 22);

using System;

class Person

{

string name; int

age;

public Person(string n, int a)

{

name=n;

age=a;

}

public static void CallByVal(Person p)

{

p.age=66;

p=new Person("John", 22); //this will be forgotten after the call

}

APPLICATION PROGRAMMING Page 29

ARRAY MANIPULATION IN C#
• C# arrays look like that of C/C++. But, basically, they are derived from the base

class viz.
System.Array.
• Array is a collection of data elements of same type, which are accessed using numerical

index.

• Normally, in C#, the array index starts with 0. But it is possible to have an array with

arbitrary lower bound using the static method CreateInstance() of System.Array.
• Arrays can be single or multi-dimensional. The declaration of array would look like –

• In .NET, the members of array are automatically set to their respective default value. For

example, in the statement,
int[] a= new int[10];

all the elements of a are set to 0. Similarly, string array elements are set to null and so on.

ARRAY AS PARAMETERS AND RETURN VALUES
• Array can be passed as parameter to a method and also can be returned from a method.
• Consider the following program:

Output-

20 54 12 -56 Hello world

WORKING WITH MULTIDIMENSIONAL ARRAYS
• There are two types of multi-dimensional arrays in C# viz. rectangular array and jagged

array.
• The rectangular array is an array of multiple dimensions and each row is of same length.
• Consider the following program:

}

string[] str={"Hello", "World"}; return

str;

}

public static void Main()

{

int[] p=new int[]{20, 54, 12, -56}; disp(p);

string[] strs=MyFun();

foreach(string s in strs)

Console.WriteLine(s);

}

//returning an array public static string[] MyFun()

{

using System;

class Test

{

public static void disp(int[] arr) //taking array as parameter

{

for(int i=0;i<arr.Length;i++)

Console.WriteLine("{0} ", arr[i]);

}

int[] a= new int[10];

a[0]= 5;

a[1]= 14;

……….

string[] s= new string[2]{“raja”, “john”};

int[] b={15, 25, 31, 78}; //new is missing. Still valid

APPLICATION PROGRAMMING Page 30

using System;
class Test

{
static void Main(string[]

{
// A rectangular MD array.

int[,] myMatrix;
myMatrix = new int[6,6];

// Populate (6 * 6) array.

for(int i = 0; i < 6; i++)
for(int j = 0; j < 6; j++)

myMatrix[i, j] = i * j;

// Print (6 * 6) array.
for(int i = 0; i < 6; i++)

{
for(int j = 0; j < 6; j++)

Console.Write(myMatrix[i, j] + "\t");
Console.WriteLine();

}

}

}

Output:

0

0

0

0

0

0
 0 1 2 3 4 5
 0 2 4 6 8 10
 0 3 6 9 12 15
 0 4 8 12 16 20

 0 5 10 15 20 25

•A jagged array is an array whose elements are arrays.

The elements of array can be of different dimensions and sizes.

A jagged array is sometimes called an "array of arrays."

APPLICATION PROGRAMMING Page 31

Unit-III

Object Oriented Programming

UNDERSTANDING OBJECT LIFETIME
• Automatic memory-management: Programmers never directly de-allocate an object

from memory (therefore there is no "delete" keyword).

• Objects are allocated onto a region-of-memory termed the 'managed-heap' where they

will be automatically de-allocated by CLR at “sometime later”.

• The golden rule of .NET Memory Management: “Allocate an object onto the managed-

heap using the new keyword and forget about it”.
• CLR removes the objects which are

→ no longer needed or
→ unreachable by current application

• Consider the following code:

• Here, c is created within the scope of Main(). Thus, once the application shuts down, this

reference is no longer valid and therefore it is a candidate for garbage collection.
• But, we cannot surely say that the object „c‟ is destroyed immediately after Main()

function. All we can say is when CLR performs the next garbage collection; c is ready to

be destroyed.

THE CIL OF "new"
• When C# compiler encounters the 'new' keyword, it will emit a CIL “newobj"

instruction to the code- module.
• The garbage-collector(GC) is a tidy house-keeper.

GC compacts empty blocks of memory for purpose of optimization.
• The heap maintains a new-object-pointer(NOP).

NOP points to next available slot on the heap where the next object will be
placed.

• The newobj instruction informs CLR to perform following sequence of events:
i) CLR calculates total memory required for the new object to be allocated (Figure 5.2).

If this object contains other internal objects, their memory is also taken into

account.
Also, the memory required for each base class is also taken into account.

ii) Then, CLR examines heap to ensure that there is sufficient memory to store the new
object.

If yes, the object's constructor is called and a reference to the object in the

memory is returned (which just happens to be identical to the last position of

NOP).

//create a local car object

public static int Main(string[] args)

{

//place an object onto the managed heap

Car c=new Car("zen",200,100);

}

// if 'c' is the only reference to the

//Car object, it may be destroyed when

// Main exits

APPLICATION PROGRAMMING Page 32

iii) Finally, CLR advances NOP to point to the next available slot on the heap.

Figure 5.2: reference types are allocated on managed heap

DEFINING INTERFACES
• An interface is a collection of abstract-methods that may be implemented by a given

class (in other words, an interface expresses a behavior that a given class/structure may

choose to support).
• Interface is a pure protocol. i.e.

→ It never defines data-type &
→ It never provides a default implementation of the methods.

• Interface
→ never specifies a base class (not even System.Object) &

→ never contains member that do not take an access-modifier (as all

interface-members are implicitly public).
• It can define any number of properties.
• Here is the formal definition:

• Interface-types are somewhat useless on their own (as they are nothing more than a

named-
collection of abstract-members). Given this, we cannot allocate interface-types:

IMPLEMENTING AN INTERFACE

• A class/structure can extend its functionality by supporting a given interface using a

comma- delimited list in the type-definition.

• Implementing an interface is an all-or-nothing proposition i.e. the supporting-class

cannot
selectively choose the members it wants to implement.
• A given class may implement many interfaces

but the class may have exactly one base class.

// This class derives from System.Object and implements single interface.

public class SomeClass : ISomeInterface

{ ... }

// This struct derives from System.ValueType and implements 2 interfaces.

public struct SomeStruct : ISomeInterface, IPointy

{ ... }

}

// Compiler error!

// Ack! Illegal to "new" interface types.

static void Main(string[] args)

{

IPointy p = new IPointy();

public interface IPointy

{

int GetNumberOfPoints();

}

APPLICATION PROGRAMMING Page 33

• Following figure illustrates IPointy-compatible classes.

• Consider the following code:

• Here, each class returns its number of points to the caller when asked to do so.

CONTRASTING INTERFACES TO ABSTRACT BASE CLASS
Abstract Base Classes
• Abstract base classes define a group of abstract-methods.
• They can

→ define public, private & protected state data and
→ define any number of concrete-methods that can be accessed by the

subclasses.

Interfaces

• An interface is a collection of abstract-methods that may be implemented by a given

class (in other words, an interface expresses a behavior that a given class/structure may

choose to support).
• Interface is a pure protocol. i.e.

→ It never defines data-type &
→ It never provides a default implementation of the methods.

• Interface
→ never specifies a base class (not even System.Object) &

→ never contains member that do not take an access-modifier (as all

interface-members are implicitly public).
• Consider the following code:

• The interface-based protocol allows a given type to support numerous behaviors

while avoiding the issues that arise when deriving from multiple

base classes.

• Interface-based programming provides a way to add polymorphic behaviour into a system:

public interface IAmBadInterface

{

// Error, interfaces can't define data!

int myInt = 0;

// Error, only abstract members allowed!

void MyMethod()

{

Console.WriteLine("Hi!");

}

}

{ return 6; }

}

public class Triangle: Shape, IPointy

{

public Triangle() {. . }

public int GetNumberOfPoints() // IPointy Implementation.

{ return 3; }

}

// IPointy Implementation.

public class Hexagon: Shape, IPointy

{

public Hexagon() {. . }

public int GetNumberOfPoints()

APPLICATION PROGRAMMING Page 34

If multiple classes implement the same interface in their unique ways, we

have the power to treat each type in the same manner.

INVOKING INTERFACE MEMBERS AT THE OBJECT LEVEL

• One way to interact with functionality-supplied by a given interface is to invoke the

methods directly from the object-level.

• Following 3 techniques can be used to check which interfaces are supported by a given

type:
i. By explicit casting ii. By using "as" keyword iii. By using "is"

keyword
Method 1: Explicit Casting
• An explicit-cast can be used to obtain an interface-reference.
• When we attempt to access an interface not supported by a given class using a direct-

cast, the runtime throws an InvalidCastException.

Method 2: The "as" Keyword
• The "as" operator can be used to downcast between types or implemented-interface.

• The "as" keyword assigns the interface-variable to null if a given interface is not

supported by the object (rather than throwing an exception).

Method 3: The "is" Keyword
• The "is" operator can be used verify at runtime if an object is compatible with a given type.

• We may discover at runtime which items in the array support this behavior. For example,

public static void Main(string[] args)

{

Triangle tri=new Triangle(); if(tri

is IPointy)

Console.WriteLine(tri.GetNumberOfPoints());

else

Console.WriteLine("OOPS! Not Pointy");

}

public static void Main(string[] args)

{

// Can we treat h as IPointy? Hexagon

hex=new Hexagon("peter"); IPointy ipt = hex

as IPointy;

if(ipt != null)

Console.WriteLine(ipt.GetNumberOfPoints());

else

Console.WriteLine("OOPS! Not pointy...");

}

public static void Main(string[] args)

{

Hexagon hex=new Hexagon("bill"); IPointy

ipt;

try

{

ipt=(IPointy)hex; // explicit casting

Console.WriteLine(ipt.GetNumberOfPoints());

}

catch (InvalidCastException e)

{

Console.WriteLine(e.Message);

}

}

public static void Main(string[] args)

{ // Call new Points member defined by IPointy

Hexagon hex=new Hexagon();

Console.WriteLine("points: {0}", hex.GetNumberOfPoints()); //prints 6

Triangle tri=new Triangle();

Console.WriteLine("points: {0}", tri.GetNumberOfPoints()); //prints 3

}

APPLICATION PROGRAMMING Page 35

INTERFACES AS PARAMETERS

• Given that interfaces are valid .NET types, we may construct methods that take

interfaces as parameters.
• To illustrate, assume we have defined another interface named IDraw3D:

• Next, assume that two of our three shapes (Circle and Hexagon) have been configured to

support
this new behavior:

• If we now define a method taking an IDraw3D interface as a parameter, we are able to

effectively send in any object implementing IDraw3D (if we attempt to pass in a type not
supporting the necessary interface, we receive a compile-time error).

// Circle supports IDraw3D

public class Circle : Shape, IDraw3D

{

public void Draw3D()

{

Console.WriteLine("Drawing Circle in 3D!");

}

}

// Hexagon supports IPointy and IDraw3D

public class Hexagon : Shape, IPointy, IDraw3D

{

public void Draw3D()

{

Console.WriteLine("Drawing Hexagon in 3D!");

}

}

// Models the ability to render a type in stunning 3D.

public interface IDraw3D

{

void Draw3D();

}

public static void Main(string[] args)

{

Shape[] s = { new Hexagon(), new Circle(), new Triangle("Ram"), new Circle("Sham")} ; for(int i = 0; i <

s.Length; i++)

{

// Recall the Shape base class defines an abstract Draw()

// member, so all shapes know how to draw themselves.

s[i].Draw();

if(s[i] is IPointy)

Console.WriteLine("Points: {0} ", ((IPointy)s[i]).GetNumberOfPoints());

else

Console.WriteLine("OOPS! Not Pointy");

}

}

APPLICATION PROGRAMMING Page 36

• Consider the following:

• Here, the triangle is never drawn, as it is not IDraw3D-compatible

EXPLORING THE SYSTEM.COLLECTIONS NAMESPACE
• System.Collections defines a numbers of standard interfaces. For example:

System.Collections
Interface

Meanin

g
ICollection Defines generic characteristics (e.g., count and thread safety)

for a collection type.

IComparer Defines methods to support the comparison of objects for
equality.

IDictionary Allows an object to represent its contents using name/value
pairs.

IDictionaryEnumerat
or

Enumerates the contents of a type supporting IDictionary.

IEnumerable Returns the IEnumerator interface for a given object.
IEnumerator Generally supports foreach-style iteration of subtypes.

IHashCodeProvider Returns the hash code for the implementing type using a
customized hash algorithm.

IList Provides behavior to add, remove, and index items in a list of
objects.

• Following figure illustrates the relationship between each type of the interfaces:

// Make some shapes. If they can be rendered in 3D, do it!

public class Program

{

// I'll draw anyone supporting IDraw3D.

public static void DrawIn3D(IDraw3D itf3d)

{

Console.WriteLine("Drawing IDraw3D compatible type");

itf3d.Draw3D();

}

static void Main()

{

Shape[] s = { new Hexagon(), new Circle(), new Triangle()}; for(int i = 0; i <

s.Length; i++)

{

if(s[i] is IDraw3D)

DrawIn3D((IDraw3D)s[i]);

}

}

}

APPLICATION PROGRAMMING Page 37

SYSTEM.COLLECTIONS.SPECIALIZED NAMESPACE

System.Collections.Specialized Meanin

g
CollectionsUtil Creates collections that ignore the case in strings

HybridDictionary Implements Dictionary by using a ListDictionary
when the collection is small, and then switching
to a Hashtable when the collection gets large

ListDictionary Implements IDictionary using a singly linked-list.

Recommended for collections that typically

contain
10 items or less

NameObjectCollectionBase Provides the abstract base class for a sorted

collection of associated String keys and Object
values that can be accessed either with the key or
with the index

NameObjectCollectionB
ase KeysCollection

Represent
s
collection

a collectio
n

of the string keys of a

NameValueCollection Represents a sorted collection of associated
string- keys and string-values that can be
accessed either with the key or with the index

StringCollection Represents a collection of strings

StringDictionary Implements a hash-table with the key strongly
typed to be a string rather than an object

StringEnumerator Supports a simple iteration over a StringCollection

ERRORS, BUGS & EXCEPTION
Keywords Meaning

Errors These are caused by end-user of the
application.

For e.g., entering un-expected value in a textbox, say
USN.

Bugs These are caused by the

programmer. For e.g.
→ making use of NULL pointer or
→ referring array-index out of bound

Exceptions These are regarded as runtime anomalies that are difficult to

prevent. For e.g.
→ trying to connect non-existing database
→ trying to open a corrupted file
→ trying to divide a number by zero

THE ROLE OF .NET EXCEPTION HANDLING
• Programmers have a well-defined approach to error handling which is common to all

.NET aware- languages.

• Identical syntax used to throw & catch exceptions across assemblies, applications &

machine boundaries.

• Rather than receiving a cryptic-numerical value that identifies the problem at hand,

exceptions are objects that contain a human readable description of the problem.
Objects also contain a detailed snapshot of the call-stack that eventually triggered
the exception.

• The end-user can be provided with the help-link information.
Help-link information point to a URL that provides detailed information

regarding error at hand.

APPLICATION PROGRAMMING Page 38

THE ATOMS OF .NET EXCEPTION HANDLING
• Programming with structured exception handling involves the use of 4 key elements:

i) A 'type' that represents the details of the exception that occurred.
ii) A method that throws an instance of the exception-class to the caller.
iii) A block of code that will invoke the exception-ready method (i.e. try block).
iv) A block of code that will process the exception (i.e. catch block).

• C# offers 4 keywords {try, catch, throw and finally} that can be used to throw and

handle exceptions.
• The type that represents the problem at hand is a class derived from System.Exception.

THE SYSTEM.EXCEPTION BASE CLASS

• All system-supplied and custom exceptions derive from the System.Exception base

class (which in turn derives from System.Object).

CORE MEMBERS OF SYSTEM.EXCEPTION TYPE
Member Meaning

Message This returns textual description of a given error.
The error-message itself is set as a constructor-parameter.

TargetSite This returns name of the method that threw the exception.
Source This returns name of the assembly that threw the exception.
HelpLink This returns a URL to a help-file which describes the error in detail.

StackTree This returns a string that identifies the sequence of calls that triggered the
exception.

InnerException This is used to obtain information about the previous exceptions that
causes the current exception to occur.

THROWING A GENERIC EXCEPTION
• During the program, if any exception occurs, we can throw a specific exception like

→ DivideByZeroException

→ FileNotFoundException

→ OutOfMemoryException

• The object of Exception class can handle any type of exception, as it is a base class for

all type of exceptions.
• Consider the following code:

public class Exception: object

{

public Exception();

public Exception(string message);

public string HelpLink { virtual get; virtual set;} public

string Message {virtual get;}

public string Source {virtual get; virtual set;} public

MethodBase TargetSite{get;}

}

APPLICATION PROGRAMMING Page 39

Output:

Enter a number: 12 speed is

=12

Enter a number: 567

Unhandled Exception: System.Exception: crossed limit!!! at

Test.Fun(Int32 d)

at Test.Main()

• In the above example, if the entered-value d is greater than 100, then we throw an

exception.
• Firstly, we have created a new instance of the System.Exception class,

then we have passed a message “crossed limit” to a Message property of
Exception class.

• It is upto the programmer to decide exactly
→ what constitute an exception &
→ when the exception should be thrown.

• Using throw keyword, program throws an exception when a problem shows up.

CATCHING EXCEPTIONS
• A catch block contains a code that will process the exception.
• When the program throws an exception, it can be caught using “catch” keyword.
• Once the exception is caught, the members of System.Exception class can be invoked.
• These members can be used to

→ display a message about the exception
→ store the information about the error in a file and
→ send a mail to administrator

• Consider the following code:

using System;

class Test

{

int Max=100;

public void Fun(int d)

{

if(d>Max)

throw new Exception("crossed limit!!!"); else

Console.WriteLine("speed is ={0}", d);

}

public static void Main()

{

Test ob=new Test(); Console.WriteLine("Enter a

number:");

int d=int.Parse(Console.ReadLine());

ob.Fun(d);

}

}

APPLICATION PROGRAMMING Page 40

Output-1:

Enter a number: 12

Speed is =12

Output-2:

Enter a number: 123 Message:

crossed limit!!! Method: Void

Fun(Int32) Speed is=123

• A try block contains a code that will check for any exception that may be encountered

during its scope.
• If an exception is detected, the program control is sent to the appropriate catch-block.

Otherwise, the catch-block is skipped.

• Once an exception is handled, the application will continue its execution from very next

point after catch-block.
THE FINALLY BLOCK
• The try/catch block may also be attached with an optional "finally" block.

• A finally block contains a code that is executed "always", irrespective of whether an

exception is thrown or not.
• For example, if you open a file, it must be closed whether an exception is raised or not.
• The finally block is used to

→ clean-up any allocated memory
→ close a database connection
→ close a file which is in use

• The code contained within a 'finally' block executes "all the time", even if the logic

within try clause does not generate an exception.
• Consider the following code:

using System;

class Test

{

int Max=100;

public void Fun(int d)

{

try

{

if(d>Max)

throw new Exception("crossed limit!!!");

}

catch(Exception e)

{

Console.WriteLine("Message:{0}",e.Message);

Console.WriteLine("Method:{0}",e.TargetSite);

}

//the error has been handled,

//continue with the flow of this application

Console.WriteLine("Speed is ={0}", d);

}

public static void Main()

{

Test ob=new Test();

Console.WriteLine("Enter a number:"); int

d=int.Parse(Console.ReadLine());

ob.Fun(d);

}

}

APPLICATION PROGRAMMING Page 41

Output:

Error message = you cannot divide a number by 0 Result: 0

using System; class

DivNumbers

{

public static int SafeDivision(int num1, int num2)

{

if(num2==0)

throw new DivideByZeroException(“you cannot divide a number by 0”);

return num1/num2;

}

static void Main(string[] args)

{

int num1=15, num2=0; int

result=0;

try

{

result=SafeDivision(num1,num2);

}

catch(DivideByZeroException e)

{

Console.WriteLine("Error message = {0}", e.Message);

}

finally

{

Console.WriteLine("Result: {0}", result);

}

}

}

APPLICATION PROGRAMMING Page 42

UNIT-IV

Delegates And Events

Understanding the .NET Delegate Type

Before formally defining .NET delegates, let’s gain a bit of perspective. Historically

speaking, the Windows API makes frequent use of C-style function pointers to create entities

termed callback functions or simply callbacks. Using callbacks, programmers were able to

configure one function to report back to (call back) another function in the application.

The problem with standard C-style callback functions is that they represent little more than a

raw address in memory. Ideally, callbacks could be configured to include additional type-safe

information such as the number of (and types of) parameters and the return value (if any) of

the method pointed to. Sadly, this is not the case in traditional callback functions, and, as you

may suspect, can therefore be a frequent source of bugs, hard crashes, and other runtime

disasters.

Nevertheless, callbacks are useful entities. In the .NET Framework, callbacks are still

possible, and their functionality is accomplished in a much safer and more object-oriented

manner using delegates. In essence, a delegate is a type-safe object that points to another

method (or possibly multiple methods) in the application, which can be invoked at a later

time. Specifically speaking, a delegate type maintains three important pieces of information:

• The name of the method on which it makes calls

• The arguments (if any) of this method

• The return value (if any) of this method

Defining a Delegate in C#

When you want to create a delegate in C#, you make use of the delegate keyword. The name

of your delegate can be whatever you desire. However, you must define the delegate to match

the signature of the method it will point to.

 For example, assume you wish to build a delegate named BinaryOp that can point to any

method that returns an integer and takes two integers as input parameters:

// This delegate can point to any method,

// taking two integers and returning an

// integer.

public delegate int BinaryOp(int x, int y);

When the C# compiler processes delegate types, it automatically generates a sealed class

deriving from System.MulticastDelegate. This class (in conjunction with its base class,

System.Delegate) provides the necessary infrastructure for the delegate to hold onto the list of

methods to be invoked at a later time.

To understand the process, here is the crux of the generated BinaryOp class

type (bold marks the items specified by the defined delegate type):

sealed class BinaryOp : System.MulticastDelegate

{

public BinaryOp(object target, uint functionAddress);

public void Invoke(int x, int y);

public IAsyncResult BeginInvoke(int x, int y,

AsyncCallback cb, object state);

public int EndInvoke(IAsyncResult result);

}

APPLICATION PROGRAMMING Page 43

Understanding C# Events

Delegates are fairly interesting constructs in that they enable two objects in memory to

engage in a two-way conversation. As you may agree, however, working with delegates in

the raw does entail a good amount of boilerplate code (defining the delegate, declaring

necessary member variables,and creating custom registration/unregistration methods).

Because the ability for one object to call back to another object is such a helpful construct, C#

provides the event keyword to lessen the burden of using delegates in the raw. When the

compiler processes the event keyword, you are automatically provided with registration and

unregistration methods as well as any necessary member variable for your delegate types. In

this light, the event keyword is little more than syntactic sugar, which can be used to save you

some typing time.

Defining an event is a two-step process.

 First, you need to define a delegate that contains the methods to be called when the event is

fired. Next, you declare the events (using the C# event keyword) in terms of the related

delegate. In a nutshell, defining a type that can send events entails the following pattern

(shown in pseudo-code):

public class SenderOfEvents

{

public delegate retval AssociatedDelegate(args);

public event AssociatedDelegate NameOfEvent;

...

}

The events of the Car type will take the same name as the previous delegates (AboutToBlow

and Exploded). The new delegate to which the events are associated will be called

CarEventHandler. Here are the initial updates to the Car type:

public class Car

{

// This delegate works in conjunction with the

// Car's events.

public delegate void CarEventHandler(string msg);

// This car can send these events.

public event CarEventHandler Exploded;

public event CarEventHandler AboutToBlow;

...

}

Sending an event to the caller is as simple as specifying the event by name as well as any

required parameters as defined by the associated delegate. To ensure that the caller has

indeed registered with event, you will want to check the event against a null value before

invoking the delegate’s method set. These things being said, here is the new iteration of the

Car’s Accelerate() method:

public void Accelerate(int delta)

{

// If the car is dead, fire Exploded event.

if (carIsDead)

{

if (Exploded != null)

Exploded("Sorry, this car is dead...");

}

APPLICATION PROGRAMMING Page 44

else

{

currSpeed += delta;

// Almost dead?

if (10 == maxSpeed - currSpeed

&& AboutToBlow != null)

{

AboutToBlow("Careful buddy! Gonna blow!");

}

// Still OK!

if (currSpeed >= maxSpeed)

carIsDead = true;

else

Console.WriteLine("->CurrSpeed = {0}", currSpeed);

}

}

With this, you have configured the car to send two custom events without the need to define

custom registration functions.

The Role of .NET Assemblies

.NET applications are constructed by piecing together any number of assemblies. Simply put,

an assembly is a versioned, self-describing binary file hosted by the CLR. Now, despite the

fact that .NET assemblies have exactly the same file extensions (*.exe or *.dll) as previous

Win32 binaries (including legacy COM servers), they have very little in common under the

hood. Thus, to set the stage for the information to come, let’s ponder some of the benefits

provided by the assembly format.

Assemblies Are Configurable

Assemblies can be deployed as “private” or “shared.” Private assemblies reside in the same

directory (or possibly a subdirectory) as the client application making use of them. Shared

assemblies, on the other hand, are libraries intended to be consumed by numerous

applications on a single machine and are deployed to a specific directory termed the Global

Assembly Cache (GAC). Regardless of how you deploy your assemblies, you are free to

author XML-based configuration files. Using these configuration files, the CLR can be

instructed to “probe” for assemblies under a specific location, load a specific version of a

referenced assembly for a particular client, or consult an arbitrary directory on your local

machine, your network location, or a web-based URL.

Understanding the Format of a .NET Assembly

Now that you’ve learned about several benefits provided by the .NET assembly, let’s shift

gears and

get a better idea of how an assembly is composed under the hood. Structurally speaking, a

.NET

assembly (*.dll or *.exe) consists of the following elements:

• A Win32 file header

• A CLR file header

• CIL code

• Type metadata

APPLICATION PROGRAMMING Page 45

• An assembly manifest

• Optional embedded resources

Single-File and Multifile Assemblies

Technically speaking, an assembly can be composed of multiple modules. Amodule is really

nothing more than a generic term for a valid .NET binary file. In most situations, an assembly

is in fact composed of a single module. In this case, there is a one-to-one correspondence

between the (logical) assembly and the underlying (physical) binary (hence the term single-

file assembly).

Single-file assemblies contain all of the necessary elements (header information, CIL code,

type metadata, manifest, and required resources) in a single *.exe or *.dll package. Figure 11-

3 illustrates the composition of a single-file assembly.

A multifile assembly, on the other hand, is a set of .NET *.dlls that are deployed and

versioned as a single logic unit. Formally speaking, one of these *.dlls is termed the primary

module and contains the assembly-level manifest (as well as any necessary CIL code,

metadata, header information, and optional resources). The manifest of the primary module

records each of the related *.dll files it is dependent upon.

Building aVisual Basic .NET Client Application

To illustrate the language-agnostic attitude of the .NET platform, let’s create another console

application (VbNetCarClient), this time using Visual Basic .NET (see Figure 11-10). Once

you have created the project, set a reference to CarLibrary.dll using the Add Reference dialog

box.

Like C#, Visual Basic .NET requires you to list each namespace used within the current file.

However, Visual Basic .NET offers the Imports keyword rather than the C# using keyword.

Given this, add the following Imports statement within the Module1.vb code file:

Imports CarLibrary

Module Module1

Sub Main()

End Sub

End Module

Notice that the Main() method is defined within a Visual Basic .NET Module type (which has

nothing to do with a *.netmodule file for a multifile assembly). Modules are simply a Visual

Basic .NET shorthand notation for defining a sealed class that can contain only static

methods. To drive

this point home, here would be the same construct in C#:

// A VB .NET 'Module' is simply a sealed class

// containing static methods.

public sealed class Module1

{

public static void Main()

{

}

}

APPLICATION PROGRAMMING Page 46

Building and Consuming a Multifile Assembly

Now that you have constructed and consumed a single-file assembly, let’s examine the

process of building a multifile assembly. Recall that amultifile assembly is simply a

collection of related modules that is deployed and versioned as a single unit. At the time of

this writing, Visual Studio 2005 does not support a C# multifile assembly project template.

Therefore, you will need to make use of the command-line compiler (csc.exe) if you wish to

build such as beast.

To illustrate the process, you will build a multifile assembly named AirVehicles. The primary

module (airvehicles.dll) will contain a single class type named Helicopter. The related

manifest (also contained in airvehicles.dll) catalogues an additional *.netmodule file named

ufo.netmodule, which contains another class type named (of course) Ufo. Although both class

types are physically contained in separate binaries, you will group them into a single

namespace named AirVehicles.

Finally, both classes are created using C# (although you could certainly mix and match

languages if you desire).

To begin, open a simple text editor (such as Notepad) and create the following Ufo class

definition saved to a file named ufo.cs:

using System;

namespace AirVehicles

{

public class Ufo

{

public void AbductHuman()

{

Console.WriteLine("Resistance is futile");

}

}

}

To compile this class into a .NET module, navigate to the folder containing ufo.cs and issue

the following command to the C# compiler (the module option of the /target flag instructs

csc.exe to produce a *.netmodule as opposed to a *.dll or *.exe file):

csc.exe /t:module ufo.cs

Understanding Private Assemblies

Technically speaking, the assemblies you’ve created thus far in this chapter have been

deployed as private assemblies. Private assemblies are required to be located within the same

directory as the client application (termed the application directory) or a subdirectory thereof.

Recall that when you set a reference to CarLibrary.dll while building the

CSharpCarClient.exe and VbNetCarClient.exe applications, Visual Studio 2005 responded by

placing a copy of CarLibrary.dll within the client’s application directory.

When a client program uses the types defined within this external assembly, the CLR simply

loads the local copy of CarLibrary.dll. Because the .NET runtime does not consult the system

APPLICATION PROGRAMMING Page 47

registry when searching for referenced assemblies, you can relocate the CSharpCarClient.exe

(or VbNetCarClient.exe) and CarLibrary.dll assemblies to location on your machine and run

the application (this is often termed Xcopy deployment).

Uninstalling (or replicating) an application that makes exclusive use of private assemblies is

a no-brainer: simply delete (or copy) the application folder. Unlike with COM applications,

you do not need to worry about dozens of orphaned registry settings. More important, you do

not need to worry that the removal of private assemblies will break any other applications on

the machine.

Understanding Publisher Policy Assemblies

The next configuration issue you’ll examine is the role of publisher policy assemblies. As

you’ve just seen, *.config files can be constructed to bind to a specific version of a shared

assembly, thereby bypassing the version recorded in the client manifest. While this is all well

and good, imagine you’re an administrator who now needs to reconfigure all client

applications on a given machine to rebind to version 2.0.0.0 of the CarLibrary.dll assembly.

Given the strict naming convention of a configuration file, you would need to duplicate the

same XML content in numerous locations (assuming you are, in fact, aware of the locations

of the executables using CarLibrary!). Clearly this would be a maintenance nightmare.

Publisher policy allows the publisher of a given assembly (you, your department, your

company, or what have you) to ship a binary version of a *.config file that is installed into the

GAC along with the newest version of the associated assembly. The benefit of this approach

is that client application directories do not need to contain specific *.config files. Rather, the

CLR will read the current manifest and attempt to find the requested version in the GAC.

However, if the CLR finds a publisher policy assembly, it will read the embedded XML data

and perform the requested redirection at the level of the GAC.

Publisher policy assemblies are created at the command line using a .NET utility named

al.exe (the assembly linker). While this tool provides a large number of options, building a

publisher policy assembly requires you only to pass in the following input parameters:

• The location of the *.config or *.xml file containing the redirecting instructions

• The name of the resulting publisher policy assembly

• The location of the *.snk file used to sign the publisher policy assembly

• The version numbers to assign the publisher policy assembly being constructed

If you wish to build a publisher policy assembly that controls CarLibrary.dll, the command

set is as follows:

al /link: CarLibraryPolicy.xml /out:policy.1.0.CarLibrary.dll

/keyf:C:\MyKey\myKey.snk /v:1.0.0.0

Understanding the <codeBase> Element

Application configuration files can also specify code bases. The <codeBase> element can be

used to instruct the CLR to probe for dependent assemblies located at arbitrary locations

(such as network share points, or simply a local directory outside a client’s application

directory).

The System.Configuration Namespace

Currently, all of the *.config files shown in this chapter have made use of well-known XML

elements that are read by the CLR to resolve the location of external assemblies. In addition

to these recognized elements, it is perfectly permissible for a client configuration file to

APPLICATION PROGRAMMING Page 48

contain application-specific data that has nothing to do with binding heuristics. Given this, it

should come as no surprise that the .NET Framework provides a namespace that allows you

to programmatically read the data within a client configuration file.

The System.Configuration namespace provides a small set of types you may use to read

custom data from a client’s *.config file. These custom settings must be contained within the

scope of an <appSettings> element. The <appSettings> element contains any number of

<add> elements that define a key/value pair to be obtained programmatically.

For example, assume you have a *.config file for a console application named

AppConfigReaderApp

that defines a database connection string and a point of data named timesToSayHello:

<configuration>

<appSettings>

<add key="appConStr"

value="server=localhost;uid='sa';pwd='';database=Cars" />

<add key="timesToSayHello" value="8" />

</appSettings>

</configuration>

Reading these values for use by the client application is as simple as calling the instance-level

GetValue() method of the System.Configuration.AppSettingsReader type. As shown in the

following code, the first parameter to GetValue() is the name of the key in the *.config file,

whereas the second parameter is the underlying type of the key (obtained via the C# typeof

operator):

class Program

{

static void Main(string[] args)

{

// Create a reader and get the connection string value.

AppSettingsReader ar = new AppSettingsReader();

Console.WriteLine(ar.GetValue("appConStr", typeof(string)));

// Now get the number of times to say hello, and then do it!

int numbOfTimes = (int)ar.GetValue("timesToSayHello", typeof(int));

for(int i = 0; i < numbOfTimes; i++)

Console.WriteLine("Yo!");

Console.ReadLine();

}

}

The AppSettingsReader class type does not provide a way to write application-specific data

to a *.config file. While this may seem like a limitation at first encounter, it actually makes

good sense. The whole idea of a *.config file is that it contains read-only data that is

consulted by the CLR (or possibly the AppSettingsReader type) after an application has

already been deployed to a target machine.

APPLICATION PROGRAMMING Page 49

UNIT-V

ADO.NET

A High-Level Definition of ADO.NET

If you have a background in Microsoft’s previous COM-based data access model (Active

Data Objects,or ADO), understand that ADO.NET has very little to do with ADO beyond the

letters “A,” “D,” and “O.” While it is true that there is some relationship between the two

systems (e.g., each has the concept of connection and command objects), some familiar ADO

types (e.g., the Recordset) no longer exist. Furthermore, there are a number of new

ADO.NET types that have no direct equivalent under classic ADO (e.g., the data adapter).

Unlike classic ADO, which was primarily designed for tightly coupled client/server systems.

ADO.NET was built with the disconnected world in mind, using DataSets. This type

represents a local copy of any number of related tables. Using the DataSet, the client tier is

able to manipulate and update its contents while disconnected from the data source, and it can

submit the modified data back for processing using a related data adapter.

Another major difference between classic ADO and ADO.NET is that ADO.NET has deep

support for XML data representation. In fact, the data obtained from a data store is serialized

(by default) as XML. Given that XML is often transported between layers using standard

HTTP, ADO.NET is not limited by firewall constraints.

The Two Faces of ADO.NET

The ADO.NET libraries can be used in two conceptually unique manners: connected or

disconnected. When you are making use of the connected layer, your code base will

explicitly connect to and disconnect from the underlying data store. When you are using

ADO.NET in this manner, you typically interact with the data store using connection objects,

command objects, and data reader objects. As you will see later in this chapter, data readers

provide a way to pull records from a data store using a forward-only, read-only approach

(much like a fire-hose cursor).

The disconnected layer, on the other hand, allows you to obtain a set of DataTable objects

(contained within a DataSet) that functions as a client-side copy of the external data. When

you obtain a DataSet using a related data adapter object, the connection is automatically

opened and closed on your behalf. As you would guess, this approach helps quickly free up

connections for other callers. Once the client receives a DataSet, it is able to traverse and

manipulate the contents without incurring the cost of network traffic. As well, if the client

wishes to submit the changes back to the data store, the data adapter (in conjunction with a

set of SQL statements) is used once again to update the data source, at which point the

connection is closed immediately.

Understanding ADO.NET Data Providers

ADO.NET does not provide a single set of types that communicate with multiple database

management systems (DBMSs). Rather, ADO.NET supports multiple data providers, each of

which is optimized to interact with a specific DBMS. The first benefit of this approach is that

a specific data provider can be programmed to access any unique features of the DBMS.

Another benefit is that a specific data provider is able to directly connect to the underlying

engine of the DBMS without an intermediate mapping layer standing between the tiers.

APPLICATION PROGRAMMING Page 50

Simply put, a data provider is a set of types defined in a given namespace that understand

how to communicate with a specific data source. Regardless of which data provider you

make use of, each defines a set of class types that provide core functionality. Table 22-1

documents some (but not all) of the core common objects, their base class (all defined in the

System.Data.Common namespace), and their implemented data-centric interfaces (each

defined in the System.Data namespace).

Object Base Class Implemented Interfaces Meaning in Life

Connection DbConnection IDbConnection Provides the ability to

connect to anddisconnect from the data store. Connection objects also provide access to a

related transaction object.

Command DbCommand IDbCommand Represents a SQL query

or name of a stored procedure. Command objects also provide access to the provider’s data

reader object.

DataReader DbDataReader IDataReader, IDataRecord Provides forward-only,

read-only access to data.

DataAdapter DbDataAdapter IDataAdapter, IDbDataAdapter Transfers

DataSets between the caller and the data store. Data adapters contain a set of four internal

command objects used to select,insert, update, and delete information from the data store.

Parameter DbParameter IDataParameter, Represents named

IDbDataParameter parameter within a parameterized query.

Transaction DbTransaction IDbTransaction Performs a database transaction.

Additional ADO.NET Namespaces

In addition to the .NET namespaces that define the types of a specific data provider, the base

class

Namespace Meaning in Life

Microsoft.SqlServer.Server This new .NET 2.0 namespace provides types that allow you to

author stored procedures via managed languages for SQL

Server

2005.

System.Data This namespace defines the core ADO.NET types used by all

data providers.

System.Data.Common This namespace contains types shared between data providers,

including the .NET 2.0 data provider factory types.

System.Data.Design This new .NET 2.0 namespace contains various types used to

construct a design-time appearance for custom data

components.

System.Data.Sql This new .NET 2.0 namespace contains types that allow you to

discover Microsoft SQL Server instances installed on the

current local network.

System.Data.SqlTypes This namespace contains native data types used by Microsoft

SQL Server. Although you are always free to use the

corresponding CLR data types, the SqlTypes are optimized to

work with SQL Server.

APPLICATION PROGRAMMING Page 51

The System.Data Types

Of all the ADO.NET namespaces, System.Data is the lowest common denominator. You

simply cannot build ADO.NET applications without specifying this namespace in your data

access applications.

This namespace contains types that are shared among all ADO.NET data providers,

regardless of the underlying data store. In addition to a number of database-centric exceptions

(NoNullAllowedException, RowNotInTableException, MissingPrimaryKeyException, and

the like), System.Data contains types that represent various database primitives (tables, rows,

columns, constraints, etc.), as well as the common interfaces implemented by data provider

objects.

Type Meaning in Life

Constraint Represents a constraint for a given DataColumn object

DataColumn Represents a single column within a DataTable object

DataRelation Represents a parent/child relationship between two DataTable objects

DataRow Represents a single row within a DataTable object

DataSet Represents an in-memory cache of data consisting of any number of

interrelated DataTable objects

DataTable Represents a tabular block of in-memory data

DataTableReader Allows you to treat a DataTable as a fire-hose cursor (forward only, read-

only data access); new in .NET 2.0

DataView Represents a customized view of a DataTable for sorting, filtering,

searching, editing, and navigation

IDataAdapter Defines the core behavior of a data adapter object

Abstracting Data Providers Using Interfaces

At this point, you should have a better idea of the common functionality found among all

.NET data providers. Recall that even though the exact names of the implementing types will

differ among data providers, you are able to program against these types in a similar

manner—that’s the beauty of interface-based polymorphism. Therefore, if you define a

method that takes an IDbConnection parameter, you can pass in any ADO.NET connection

object:

public static void OpenConnection(IDbConnection cn)

{

// Open the incoming connection for the caller.

cn.Open();

}

The same holds true for a member return value. For example, consider the following simple

C# program, which allows the caller to obtain a specific connection object using the value of

a custom enumeration (assume you have “used” System.Data):

namespace ConnectionApp

{

enum DataProvider

{ SqlServer, OleDb, Odbc, Oracle }

class Program

APPLICATION PROGRAMMING Page 52

{

static void Main(string[] args)

{

// Get a specific connection.

IDbConnection myCn = GetConnection(DataProvider.SqlServer);

// Assume we wish to connect to the SQL Server Pubs database.

myCn.ConnectionString =

"Data Source=localhost;uid=sa;pwd=;Initial Catalog=Pubs";

// Now open connection via our helper function.

OpenConnection(myCn);

// Use connection and close when finished.

...

myCn.Close();

}

static IDbConnection GetConnection(DataProvider dp)

{

IDbConnection conn = null;

switch (dp)

{

case DataProvider.SqlServer:

conn = new SqlConnection();

break;

case DataProvider.OleDb:

conn = new OleDbConnection();

break;

case DataProvider.Odbc:

conn = new OdbcConnection();

break;

case DataProvider.Oracle:

conn = new OracleConnection();

break;

}

return conn;

}

}

}

The benefit of working with the general interfaces of System.Data is that you have a much

better chance of building a flexible code base that can evolve over time.

The .NET 2.0 Provider Factory Model

Under NET 2.0, we are now offered a data provider factory pattern that allows us to build a

single code base using generalized data access types. Furthermore, using application

configuration files (and the spiffy new <connectionStrings> section), we are able to obtain

providers and connection strings declaratively without the need to recompile or redeploy the

client software.

APPLICATION PROGRAMMING Page 53

To understand the data provider factory implementation, recall from Table 22-1 that the

objects within a data provider each derive from the same base classes defined within the

System.Data.Common namespace:

• DbCommand: Abstract base class for all command objects

• DbConnection: Abstract base class for all connection objects

• DbDataAdapter: Abstract base class for all data adapter objects

• DbDataReader: Abstract base class for all data reader objects

• DbParameter: Abstract base class for all parameter objects

• DbTransaction: Abstract base class for all transaction objects

In addition, as of .NET 2.0, each of the Microsoft-supplied data providers now provides a

specific class deriving from System.Data.Common.DbProviderFactory. This base class

defines a number of methods that retrieve provider-specific data objects. Here is a snapshot

of the relevant members of DbProviderFactory:

public abstract class DbProviderFactory

{

...

public virtual DbCommand CreateCommand();

public virtual DbCommandBuilder CreateCommandBuilder();

public virtual DbConnection CreateConnection();

public virtual DbConnectionStringBuilder CreateConnectionStringBuilder();

public virtual DbDataAdapter CreateDataAdapter();

public virtual DbDataSourceEnumerator CreateDataSourceEnumerator();

public virtual DbParameter CreateParameter();

}

To obtain the DbProviderFactory-derived type for your data provider, the

System.Data.Common namespace provides a class type named DbProviderFactories (note the

plural in this type’s name). Using the static GetFactory() method, you are able to obtain the

specific (which is to say, singular) DbProviderFactory of the specified data provider,

 for example:

static void Main(string[] args)

{

// Get the factory for the SQL data provider.

DbProviderFactory sqlFactory =

DbProviderFactories.GetFactory("System.Data.SqlClient");

...

// Get the factory for the Oracle data provider.

DbProviderFactory oracleFactory =

DbProviderFactories.GetFactory("System.Data.OracleClient");

...

}

As you might be thinking, rather than obtaining a factory using a hard-coded string literal,

you could read in this information from a client-side *.config

However, in any case, once you have obtained the factory for your data provider, you are

able to obtain the associated provider-specific

data objects (connections, commands, etc.).

APPLICATION PROGRAMMING Page 54

Understanding the Connected Layer of ADO.NET

Recall that the connected layer of ADO.NET allows you to interact with a database using the

connection,

command, and data reader objects of your data provider. Although you have already made

use

of these objects in the previous DataProviderFactory example, let’s walk through the process

once

again in detail. When you wish to connect to a database and read the records using a data

reader

object, you need to perform the following steps:

1. Allocate, configure, and open your connection object.

2. Allocate and configure a command object, specifying the connection object as a

constructor

argument or via the Connection property.

3. Call ExecuteReader() on the configured command object.

4. Process each record using the Read() method of the data reader.

To get the ball rolling, create a brand-new console application named CarsDataReader. The

goal is to open a connection (via the SqlConnection object) and submit a SQL query (via the

SqlCommand object) to obtain all records within the Inventory table of the Cars database. At

this point, you will use a SqlDataReader to print out the results using the type indexer. Here

is the complete code within Main(), with analysis to follow:

class Program

{

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Data Readers *****\n");

// Create an open a connection.

SqlConnection cn = new SqlConnection();

cn.ConnectionString =

"uid=sa;pwd=;Initial Catalog=Cars; Data Source=(local)";

cn.Open();

// Create a SQL command object.

string strSQL = "Select * From Inventory";

SqlCommand myCommand = new SqlCommand(strSQL, cn);

// Obtain a data reader a la ExecuteReader().

SqlDataReader myDataReader;

myDataReader = myCommand.ExecuteReader(CommandBehavior.CloseConnection);

// Loop over the results.

while (myDataReader.Read())

{

Console.WriteLine("-> Make: {0}, PetName: {1}, Color: {2}.",

myDataReader["Make"].ToString().Trim(),

myDataReader["PetName"].ToString().Trim(),

myDataReader["Color"].ToString().Trim());

}

// Because we specified CommandBehavior.CloseConnection, we

// don't need to explicitly call Close() on the connection.

myDataReader.Close();

}

}

APPLICATION PROGRAMMING Page 55

Working with Data Readers

Once you have established the active connection and SQL command, the next step is to

submit the query to the data source. As you might guess, you have a number of ways to do so.

The DbDataReader type (which implements IDataReader) is the simplest and fastest way to

obtain information from a data store. Recall that data readers represent a read-only, forward-

only stream of data returned one record at a time. Given this, it should stand to reason that

data readers are useful only when submitting SQL selection statements to the underlying data

store.

Data readers are useful when you need to iterate over large amounts of data very quickly and

have no need to maintain an in-memory representation. For example, if you request 20,000

records from a table to store in a text file, it would be rather memory-intensive to hold this

information in a DataSet. A better approach is to create a data reader that spins over each

record as rapidly as possible.

Be aware, however, that data reader objects (unlike data adapter objects, which you’ll

examine later) maintain an open connection to their data source until you explicitly close the

session.

Data reader objects are obtained from the command object via a call to ExecuteReader().

When invoking this method, you may optionally instruct the reader to automatically close

down the related connection object by specifying CommandBehavior.CloseConnection.

The following use of the data reader leverages the Read() method to determine when you

have reached the end of your records (via a false return value). For each incoming record, you

are making use of the type indexer to print out the make, pet name, and color of each

automobile. Also note that you call Close() as soon as you are finished processing the

records, to free up the connection

object:

static void Main(string[] args)

{

...

// Obtain a data reader a la ExecuteReader().

SqlDataReader myDataReader;

myDataReader = myCommand.ExecuteReader(CommandBehavior.CloseConnection);

// Loop over the results.

while (myDataReader.Read())

{

Console.WriteLine("-> Make: {0}, PetName: {1}, Color: {2}.",

myDataReader["Make"].ToString().Trim(),

myDataReader["PetName"].ToString().Trim(),

myDataReader["Color"].ToString().Trim());

}

myDataReader.Close();

ShowConnectionStatus(cn);

}

The indexer of a data reader object has been overloaded to take either a string (representing

the name of the column) or an integer (representing the column’s ordinal position). Thus, you

could clean up the current reader logic (and avoid hard-coded string names) with the

following update (note the use of the FieldCount property):

APPLICATION PROGRAMMING Page 56

while (myDataReader.Read())

{

Console.WriteLine("***** Record *****");

for (int i = 0; i < myDataReader.FieldCount; i++)

{

Console.WriteLine("{0} = {1} ",

myDataReader.GetName(i),

myDataReader.GetValue(i).ToString().Trim());

}

Console.WriteLine();

}

If you compile and run your project, you should be presented with a list of all automobiles in

the Inventory table of the Cars database

Understanding the Disconnected Layer of ADO.NET

As you have seen, working with the connected layer allows you to interact with a database

using connection, command, and data reader objects. With this small handful of types, you

are able to select, insert, update, and delete records to your heart’s content (as well as trigger

stored procedures).

APPLICATION PROGRAMMING Page 57

In reality, however, you have seen only half of the ADO.NET story. Recall that the

ADO.NET object model can be used in a disconnected manner.When you work with the

disconnected layer of ADO.NET, you will still make use of connection and command

objects. In addition, you will leverage a specific object named a data adapter (which

extends the abstract DbDataAdapter) to fetch and update data. Unlike the connected layer,

data obtained via a data adapter is not processed using data reader objects. Rather, data

adapter objects make use of DataSet objects to move data between the caller and data source.

The DataSet type is a container for any number of DataTable objects, each of which contains

a collection of DataRow and DataColumn objects.

The data adapter object of your data provider handles the database connection automatically.

In an attempt to increase scalability, data adapters keep the connection open for the shortest

possible amount of time. Once the caller receives the DataSet object, he is completely

disconnected from the DBMS and left with a local copy of the remote data. The caller is free

to insert, delete, or update rows from a given DataTable, but the physical database is not

updated until the caller explicitly passes the DataSet to the data adapter for updating. In a

nutshell, DataSets allow the clients to pretend they are indeed always connected, when in fact

they are operating on an in-memory database

Given that the centerpiece of the disconnected layer is the DataSet type, your next task is to

learn how to manipulate a DataSet manually. Once you understand how to do so, you will

have no problem manipulating the contents of a DataSet retrieved from a data adapter object.

Understanding the Role of the DataSet

Simply put, a DataSet is an in-memory representation of external data. More specifically, a

DataSet is a class type that maintains three internal strongly typed collections

APPLICATION PROGRAMMING Page 58

The Tables property of the DataSet allows you to access the DataTableCollection that

contains the individual DataTables. Another important collection used by the DataSet is the

DataRelationCollection.Given that a DataSet is a disconnected version of a database schema,

it can programmatically represent the parent/child relationships between its tables. For

example, a relation can be created between two tables to model a foreign key constraint using

the DataRelation type. This object can then be added to the DataRelationCollection through

the Relations property. The ExtendedProperties property provides access to the

PropertyCollection object, which allows you to associate any extra information to the DataSet

as name/value pairs. This information can literally be anything at all, even if it has no bearing

on the data itself. For example, you can associate your company’s name to a DataSet, which

can then function as in-memory metadata. Other examples of extended properties might

include timestamps, an encrypted password that must be supplied to access the contents of

the DataSet, a number representing a data refresh rate, and so forth.

APPLICATION PROGRAMMING Page 59

APPLICATION PROGRAMMING Page 60

Working with Data Adapters

Now that you understand the ins and outs of manipulating ADO.NET DataSets, let’s turn our

attention to the topic of data adapters. Recall that data adapter objects are used to fill a

DataSet with DataTable objects and send modified DataTables back to the database for

processing. Table 22-15 documents the core members of the DbDataAdapter base class

. ADO.NET is a new data access technology developed with the disconnected n-tier

application firmly in mind. The System.Data namespace contains most of the core types you

need to programmatically interact with rows, columns, tables, and views. As you have seen,

the .NET platform ships with numerous data providers that allow you to leverage the

connected and disconnected layers of ADO.NET.

Using connection objects, command objects, and data reader objects of the connected layer,

you are able to select, update, insert, and delete records. As you have seen, command objects

support an internal parameter collection, which can be used to add some type safety to your

SQL queries and are quite helpful when triggering stored procedures.

The centerpiece of the disconnected layer is the DataSet. This type is an in-memory

representation of any number of tables and any number of optional interrelationships,

constraints, and expressions. The beauty of establishing relations on your local tables is that

you are able to programmatically navigate between them while disconnected from the remote

data store. You also examined the role of the data adapter in this chapter. Using this type (and

the related SelectCommand, InsertCommand, UpdateCommand, and DeleteCommand

properties), the adapter can resolve changes in the DataSet with the original data store. Also,

you learned about the connected layer of ADO.NET and came to understand the role of data

reader types.

THANKS

	DIGITAL NOTES
	ON
	APPLICATION PROGRAMMING
	B.TECH IV YEAR - I SEM
	(2019-20)
	THE .NET SOLUTION
	ii. Complete & Total Language Integration
	iii. A Common Runtime Engine Shared by all .NET-aware languages
	iv. A Base Class Library that
	v. A Truly Simplified Deployment Model
	C# LANGUAGE OFFERS THE FOLLOWING FEATURES
	The Role of Base Class Library (BCL)
	AN OVERVIEW OF .NET BINARIES
	Managed code & unmanaged code
	SINGLE-FILE AND MULTI-FILE ASSEMBLIES
	ROLE OF CIL
	THE ROLE OF METADATA
	THE ROLE OF MANIFEST
	COMPILING CIL TO PLATFORM-SPECIFIC INSTRUCTIONS
	UNDERSTANDING THE CTS
	CTS Class Types
	CTS Structure Types
	CTS Interface Type
	CTS Enumeration Types
	CTS Delegate Types
	INTRINSIC CTS DATA TYPES
	Ensuring CLS compliance
	UNDERSTANDING THE CLR
	A TOUR OF THE .NET NAMESPACES
	.NET NAMESPACES
	System.Collections
	System.Data.OleDb These are used for database manipulation.
	System.Diagnostics
	System.Drawing System.Drawing.Printing
	System.IO
	System.Net
	System.Security
	System.Threading
	System.Web
	System.Windows
	System.Xml
	Accessing a Namespace Programmatically
	Following Techniques can be used to learn more about the .NET Libraries
	Deploying the .NET Runtime
	BUILDING A C# APPLICATION USING csc.exe
	REFERENCING EXTERNAL ASSEMBLIES
	COMPILING MULTIPLE SOURCE FILES
	REFERENCING MULTIPLE EXTERNAL ASSEMBLIES
	WORKING WITH csc.exe RESPONSE FILES
	THE DEFAULT RESPONSE FILE (csc.rsp)
	GENERATING BUG REPORTS
	C# "PREPROCESSOR" DIRECTIVES
	#define, #undef
	#if,#elif, #else, #endif
	#line
	#error, #warning
	#region, #endregion
	SPECIFYING CODE REGIONS
	THE ANATOMY OF A BASIC C# CLASS
	PROCESSING COMMAND LINE PARAMETERS
	Using "foreach" keyword
	Using GetCommandLineArgs() method of System.Environment type
	UNDERSTANDING VALUE TYPES AND REFERENCE TYPES
	VALUE TYPES CONTAINING REFERENCE TYPES
	BOXING AND UN-BOXING
	METHOD PARAMETER MODIFIERS
	THE DEFAULT PARAMETER PASSING BEHAVIOR
	out KEYWORD
	ref KEYWORD
	params KEYWORD
	PASSING REFERENCE TYPES BY VALUE AND REFERENCE
	ARRAY MANIPULATION IN C#
	ARRAY AS PARAMETERS AND RETURN VALUES
	WORKING WITH MULTIDIMENSIONAL ARRAYS
	UNDERSTANDING OBJECT LIFETIME
	THE CIL OF "new"
	DEFINING INTERFACES
	IMPLEMENTING AN INTERFACE
	CONTRASTING INTERFACES TO ABSTRACT BASE CLASS
	Interfaces
	INVOKING INTERFACE MEMBERS AT THE OBJECT LEVEL
	Method 1: Explicit Casting
	Method 2: The "as" Keyword
	Method 3: The "is" Keyword
	INTERFACES AS PARAMETERS
	EXPLORING THE SYSTEM.COLLECTIONS NAMESPACE
	SYSTEM.COLLECTIONS.SPECIALIZED NAMESPACE
	ERRORS, BUGS & EXCEPTION
	THE ATOMS OF .NET EXCEPTION HANDLING
	THE SYSTEM.EXCEPTION BASE CLASS
	CORE MEMBERS OF SYSTEM.EXCEPTION TYPE
	CATCHING EXCEPTIONS
	THE FINALLY BLOCK

